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SUMMARY

Digital optimal control problems, i.e. problems where a continuous-time system is controlled by a digital
computer, are very often approximated by either discrete-time or continuous-time optimal control
problems. A digital controller based on one of these approximations requires a small sampling time and
constitutes only an approximate solution. The digital LQG regulator and tracker constitute solutions to
real digital control problems which involve sampled-data, piecewise constant controls and integral
criteria. Until now only the numerical computation of the digital LQG regulator in the case of time-
invariant system and criterion matrices has been considered in the literature. The control of non-linear
stochastic systems about state trajectories is very often performed by an LQG regulator based on the
linearized dynamics about the trajectory, which constitute a time-varying system. We present a numerical
procedure to compute the digital LQG regulator and tracker in the case where the system and criterion
matrices are time-varying. Finally we present a numerical example.
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1. INTRODUCTION

Industrial processes very often constitute continuous-time systems. The automatic control of
industrial processes is performed by digital computers. The resulting automatic control system
is a digital control system schematically represented by Figure 1. The continuous-time system
has a sampler at the output and a sampler and zero-order hold circuit at the input.

The design of a digital controller for a continuous-time system is called a digital control
problem. The term digital refers to the following facts.

(a) We have sampled measurements, since a computer cannot deal with continuous-time
measurements.

(b) The control is of piecewise constant nature (a staircase function), since a sampler and
zero-order hold circuit connect the computer to the input of the system.

(c) We consider the continuous-time behaviour of the system.

Although these all seem very straightforward considerations, very often at least one of these
considerations is not met in the design of digital controllers for continuous-time systems. Very
often the digital control problem is approximated by a discrete-time control problem which
completely disregards the intersample behaviour."? In this case consideration (c) is not met.
In other cases continuous-time control algorithms are designed which then somehow have to
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Figure 1. Digital control system

be approximated by a digital control algorithm.? In these cases both considerations (a) and (b)
are not met. In both cases there is a demand for a small sampling time, in the former case
to prevent undesirable intersample behaviour and in the latter case to properly approximate
the continuous-time algorithm. This demand, e.g. in the case of robot control where the
computational burden on the computer is high, results in computational difficulties. Even if
the sampling time is chosen to be small, these digital controllers will only constitute
approximate solutions.

The digital LQ regulator, sometimes called the optimal sampled-data regulator, constitutes
the solution to a real digital control problem which involves sampled-data, piecewise constant
controls and an integral criterion and was initially presented by Levis ef al.* They considered
time-invariant system and criterion matrices and equidistant sampling. Nour Eldin® and
Dorato and Levis® considered time-varying system and criterion matrices and non-equidistant
sampling. Halyo and Caglayan’ were the first to consider the digital LQG regulator, i.e. with
the state and the incomplete state information at the sampling instants corrupted by additive
white Gaussian noise. They also considered time-varying system and criterion matrices but did
not derive an expression for the minimum cost of the problem. This was done by De Koning, ®
who considered time-invariant system and criterion matrices and both deterministic and
random sampling. While assuming non-equidistant deterministic sampling and time-varying
system and criterion matrices, Van Willigenburg®'® completely derived both the digital LQG
regulator and tracker, i.e. including expressions for the minimum cost explicit in the system
and criterion matrices. In the case of the digital LQG tracker, state deviations from a
prescribed state trajectory are penalized.

The digital LQ and LQG regulators, compared with the discrete-time and continuous-time
versions, have received little attention in the literature. This is remarkable, since a well-known
approach to control non-linear continuous-time stochastic systems about precomputed
(possibly optimal) state trajectories is through the use of an LQG regulator. On the basis of
deviations from the desired state trajectory, the LQG regulator computes on-/ine control
corrections to control the deviations to zero. The LQG regulator is based on the linearized
dynamics about the precomputed state trajectory, which constitute a time-varying linear
system.? Therefore in the case of computer control this constitutes the digital LQG regulator
for time-varying systems!

Although the continuous-time and discrete-time LQ and LQG trackers are very well
known,'® except for Nour Eldin,® who considered the digital LQ tracker, and Van
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Willigenburg, >'® who considered the digital LQG tracker, the digital LQ and LQG trackers
seem to be unpublished, which in the light of computer control again is remarkable!

None of the authors is concerned with the numerical computation of the digital LQ or LQG
regulator and tracker in the case of time-varying systems. Only the computation of the digital
LQ regulator for time-invariant system and criterion matrices has been considered.!! In this
paper we present a numerical procedure to compute the digital LQG regulator and tracker for
time-varying system and criterion matrices.

2. THE DIGITAL LQG REGULATOR AND TRACKER

Consider the stochastic continuous-time linear time-varying system

x@)=A@)x@)+B@u@) +v() (1a)
where A(f) and B(¢) are the system matrices and {v(¢)} a Gaussian white noise process, with
E{v(®)} =0, cov(v(?),v(8)) =V ()d(t —s) (1b)

and
E{x(t)} = x(f), cov(x (%), x(%))=G 2 0 (1c)

The system is controlled by a digital computer, so measurements are taken at the sampling
instants, i.e.

Y () = Cte)x(te) +w(te), k=0,1,2,3,... (1d)

where t, k=0,1,2, ..., are the (not necessarily equidistant) sampling instants and {w(#)} is
a discrete-time Gaussian white noise process independent of {v(z)}, with

— Efw()} =0, cov(w(tx), w(t)) = W(tk)B(%) (le)
The control is piecewise constant, i.e. K-
u(f)=u(te), 1€ [tk k1), k=0,1,2,3... (1)

The information available to compute the control ux consists of the measurements and the
controls up to #-y, i.e. {y(#:), i=0,1,2,...,k—1} and {u(z), i=0,1,2,...,k—1}. In this
case the time available for the computer to compute u(f) equals fx — fx—;. Although not
treated in this paper, we may also assume the information to be {y(#;), i=0,1,2,...,k} and
{u(t:),i=0,1,2,..., k- 1}, in case the computation time is negligible compared with fx — fx_1.
In the latter case all the results of this paper still hold if we substitute the discrete-time Kalman
one-step-ahead predictor by the discrete-time Kalman filter.

The digital LQG regulator problem for system (1) is to minimize

J= E(xT(tf)Hx(tf) + S[' xT()QW)Xx () + uT (ORE)u(?) dt) @)

where E denotes the expectation operator and Q(-), R(+) and H are all symmetric semipositive
definite matrices. Furthermore,

ti=1In 3)

where N is a positive integer.
The digital LQG tracking problem takes the following form. Given system (1) and a
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reference trajectory
X(?), o<t 4

minimize
J= E((x(tf) = %)) - %) + | (60 = x0T QOX(O) - x:(0) + uTOROu(r) dt)
5)

where furthermore (3) holds and again Q(+), R(-) and H are all symmetric semipositive definite
matrices. Obviously the digital LQG regulator problem is a special case of the digital LQG
tracking problem, i.e. the case where

x(1)=0, to<I<t (6)

The solution to the digital LQG tracking problem, i.e. the digital LQG tracker, is given
by9,l9

ue = — KiRe + King oy + Kidy (7a)

Ki = Re + TSk 1Tk) ~ (T FSk+ 1% + MY) (7b)

Ki =R+ TS l'e) ' (7¢)
Ki=Ri+ T 88k 1Ty) ! (7d)

Sk = Qi + ®&Sk+ 1Pk ~ KERic + T ISk 1 Tx)Ke, Sv=H (7e)
e = (8 — TiKi)"nes 1 — KTdx + I, ny = Hx.(f) (7f)

and the minimum cost is

N-1
J=XSoXo — 283 Mo + X; (1) HX, (1) + tr(SoG) + 3 {tr [KZF (Re + I TS+ 1T ) KPy]
k=0

+tr(ViSk+1) + 2 + v — Kk 1) Qdx + T gy 1) — dFK2di} (7g)
where
Ug = ll(tk) (8a)
Xk =X (tx) (8b)
S = P(tk+1, tr) (8c)
Te=T(tks1, te) (8d)
Vie=V(tk+1, k) (8e)
Qi = Srm @7, t)Q()R(, 1) dt (8f)
My = S' Tt 1) QT (U, te) dt (8g)
Ry = S " R@®) +TT(t, t) QI (1, tx)) dt (8h)

I = f ®T(t, 1) Q(O)x:(¢) dt (81)
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Tk
de= | 7 M@ 000N (0 ar (8i)
173
¢ +1
2= S T xFOQOX: () dt (8K)
L
Levn
= | v Q) ar (8D
Ik
in which ®(z, 5) is the state transition matrix considered over the interval [¢, s] of system (1a),
t
T, t) = S &(t,5)B(s) ds (8m)
te
and
t )
— Ve = | @@s)V®eTws) ds (8n)

The minimum variance state estimate X is generated by the well-known discrete-time Kalman
one-step-ahead predictor for the so-called equivalent discrete-time system

Xi+1 = PrxXp + Crug + vk (9a)
ui = CrXi + Wi (%9b)

where {vx} is a Gaussian discrete-time white noise process characterized by

N E{vi} =0, Cov(ve, V1)) = Vb (1) (9¢)
Kem
e Bp= Olhagsy bl Tz = (s
K W) LK K=
> Co=Cty ) Chans Q 9d)
Wi = W(tk) (9¢)

Also, P in (7g) is obtained from the Kalman one-step-ahead predictor which is given by

Rk +1 = (Px — HiCr)Xi + Hiyx + Trug, Xo = Xo (10a)
Hi = ®«PxCL (CPLCR + W) ™! (10b)
Pri1 = (®x — HkCo)Pr(®x — HiCi)™ + HkWH I + Vi, Po=G (10c)
where
Wi =W (&) (10d)

The digital LQG regulator is obtained by setting lg, di, zx, £=0,1,2,...,N—1, and n,
k=1,2,...,N, to zero.

3. COMPUTATION OF THE DIGITAL LQG REGULATOR AND TRACKER

3.1. Computation of the state transition matrix

The main difficulty in the numerical computation of the digital LQG tracker (7)—(10) is the
computation of (8c)—(8l), since the other formulae constitute backward recursions. Some of
them are also involved in the well-known discrete-time LQG regulator problem,'* and have
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received a lot of attention in the literature (see e.g. Reference 13). In the following we will
therefore focus on the numerical computation of (8c)—(81) and use the following well-known
facts concerning the state transition matrix:

D(t1,13)=B(t1, )P (2, 13) Vi,bL. 13, LSt <h<hi<tk (11a)
P, t1))=1 Vv, < <k (11b)
where 1 is the identity matrix. Furthermore, if
AM)=A,, tet,h], boSsh<h<t (12)
i.e. A(¢) is a constant matrix within [¢, #;], then
® (11, ) =exp(Ai(t2 — 1)) (13)

To numerically compute (8¢c)—(81), A(¢), ¢ € [tk,tk+1), k=0,1,2,...,N—1, in system (la) is
approximated by a series of constant matrices in the following way:#

AW)=A; tete+(—1) Atk te+i Aty), i=1,2,..,Ix (14a)
where Atf; and Ix are related through
At = (tie1 — )| Ix (14b)

and A must be chosen such that Ix is a positive integer. Finally,

L+iAt,

A,.zg A dt, i=1,2,..,Ik (15)
te+(i—1) Atk

so A(t) over [tk + (i — 1) Atk, tk + i Aty) is approximated by its average value. By reducing A,

the approximation can be made arbitrarily close. '* Summarizing, we approximate system (l1a),

t€ [tx, tk+1), bY

x()=A'()x@)+B@u@)+v() (16)
Since A’(¢) is piecewise constant according to (11)—(13), we have for the state transition matrix
of (16)

L

S+ L At te)= [] exp(Ai Aty), L=1,2,... I an

Note that when the time-varying system (1a) belongs to the class of commutative systems, i.e.
AMA(RL)=AL)A(L) Yh, € [to, ] (18)

then (17) also holds for the original system (la), since for a commutative system '°

t
&(t, ) = exp(S A() dt), <t <h<t 19)
t

Only if system (la) does not belong to this class, which according to (18) is very restrictive,
does (17) constitute an approximation with regard to system (la). In this case A#x should be
sufficiently small that (16) approximates (1a) close enough. Note that the computation of (17)
can be performed as a forward-in-time recursion. If A#x < 1, then (16) can be very well
approximated by a second-order Taylor expansion!$

exp(A; Aty) =1+ A; At +0-5A2 At} (20)
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Using (20), the error during each time step Afx is of the order Ati. As it will turn out later,
the error using the trapezoidal rule is of the same order. If the requirement A#x <1 is too
severe considering the approximation of system (la) by system (16), then (20) can be replaced
by another method to compute exp(A; Atx). A well-known method is the scaling and squaring
method, 16

exp(A; Atx) = [exp(A; Atx/m)]™ 21
where m is a positive, sufficiently large integer so that At/m < 1, and we can use (20) to obtain
exp(Ai Aty/m) = 1+ A; Aty/m +0-5A2(An/m)’ 22)

Note, however, that (21), (22) is exactly the same as (17), (20) with At replaced by Afx/m and
where m consecutive values of A; are kept constant. If the evaluation of A(f) is cheap,
choosing Afx < 1 initially and using (17), (20) is preferable from the point of view of accuracy
and simplicity. In the following we will choose A#x < 1, such that (16) approximates (la)
properly, and use (15), (17) and (20) to compute the state transition matrix of the time-varying
system (la). The error during each integration step is then of the order At}. This procedure
is a natural extension of the scaling and squaring method originally designed to compute the
state transition matrix for time-invariant systems. In Section 4 an example is presented which
demonstrates that the error can be made arbitrarily small.

3.2. Numerical integration
Consider a general matrix function
F(t)’ te [tk,tk+l)1 k=0)1’2""N_1 (23)

The trapezoidal numerical integration rule, where the integrand is evaluated at equidistant
times given by (14b), is based on the approximation
te+L Aty L-1
S F(t) dt = (Atk/2)<F(tk) +F+L At +2 D) F(te+i Atk)), L=2,3,.., Ik
te i=1
(24a)
while for L =1 we have

Slkmk F() dr = (Atif2)(F (tx) + F (tk + Ati) (24b)

The error during each time step A#x caused by approximation (24) is of the order Aty Ve,

of the same order as the error caused by approximation (20). From (24) observe that each
integral, using the trapezoidal rule, can be computed as a forward-in-time recursion using
successive equidistant evaluations of the integrand. All matrices appearing in the integrands
of (84)—(8l) are a priori known except for ® and I'. Given (15), (17), (20) and (24b), ® can
also be computed as a forward-in-time recursion using successive equidistant evaluations of
A(f). Consider T' given by (8d). If I'nv denotes the value of I' obtained via numerical
integration with the trapezoidal rule, from (8d), (11b) and (24a) we have

Tn(tx+ L Atr, tk) = AtkIZ)((I’(tk + L Ate, te)B(tk) + B(t + L Atx)

L-1
—_— +2 Z ‘I)(tk+LAlk,tk)B(tk+iAtk)>, L=2,3,..,Ix (25a)
i=1 +Cnly
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while for L =1 we have
Tn(tk + At, te) = (Atef2) (P (tk + Atk te)B(tk) + Btk + Atk)) (25b)

Furthermore,

Pt + (L + 1) At, te) = (Atkf2) (‘b(tk +(L+1) Ate, te)B(tx) + B(t + (L + 1) At)

L
> +2 ) &+ Lot i B(tk+iAtk)), L=1,2,3,... -1
- =1 + LAt 26)

From (25), (26), (11) and (12) we obtain

Py +(L+1) Ate, i) =Pt + (L + 1) Atr, tk + L Ati)Un(te + L Aty, tx) + (Atk/Z)

D X @@+ (L+1) Atk te+ L Ate)B(@tx) + B(tk + (L + 1) Aty)),
- _ _ +LACk
— Sams ‘Zﬂuah‘u\ Ben VKL =2,3,..., [k~ 1 (27)
“ From (28) and the previous results it follows that I" can also be computed as a forward-in-time
recursion using successive equidistant evaluations of A(¢#) and B(¢). Summarizing, the
trapezoidal numerical integration rule as described in this section together with the results of
the previous section allow us to compute equations (8c)—(8l) as forward-in-time recursions
using successive equidistant evaluations of the system and criterion matrices within [#, fx+1].

4. A NUMERICAL EXAMPLE

On the basis of the procedures outlined in Section 3, the digital LQG regulator and tracker
have been programmed by the author using PC-Matlab. Two approximations are made within
the proposed computation scheme: firstly we compute the state transition matrix of system (16)
instead of (1a) and secondly we compute all integrals using the trapezoidal rule. When the
time-varying system (la) is commutative, the state transition matrix for system (la) and (16)
is the same at the time instants given by (14) (see Section 3.2). We first demonstrate through
a numerical example that for a non-commutative system we can approximate the state
transition matrix arbitrarily close by choosing At in (14) sufficiently small. Consider the non-
commutative time-varying linear system characterized by

-3 0
_ 28
AQ) ( 35 _6,z> (28)
for which an analytical expression for the state transition matrix is known and is given by'®
exp(—t3) 0 )
®(,0) = 29
@O (S22 eotr @

We computed the components of ®(z,0) using the exact solution (29) and the numerical
procedure based on (15), (17), (20) and (25) with tx =0, tx 41 =2, L=1,2,...,Ixr and Aty =0-1.
The maximum error relative to the maximum value attained within the interval [tx, fx+1] of
each element of ®(#,0) was computed. The maximum of these four values equals 47% and
holds for the non-zero off-diagonal element. If we do the same experiment with Azx = 0-02,
we obtain 0-28%, which also holds for the non-zero off-diagonal element. This demonstrates
that by reduction of A# the error can be made arbitrarily small.
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Next consider the non-commutative system (1) with

Xo = (5) (30a)

5
AR = (’2 -1 0 ) (30b)
T\ s 2t -)
_ (sin(3¢) 1
B() = ( -1 cos(3t)> (30¢)
_n.af1+sin() 0
V=0 2( 0 1+ cos(3t)> (30d)
0-2 0
G= ( o o 2) (30e)
{2 sin(4) -2
Clt) = < -1 cos(3tk)> (30f)
.o f1+cos(2tk) 0
W) =0 2( 0 1+ sin(tk)> (30g)
th=0, t1=0-2, =07, t3=1-1, ty=1-4, ti=ts=2 (30h)
the reference state trajectory
x:(t) = 10[sin(¢) cos(®)] T, to<t<t 31

and finally the tracking criterion (5) with

(2 +sin(2t) 0
Q0= ( 0 2+ sin(2t)> (322)
_ {2+ cos(2t) 0
R = ( 0 2+ cos(2t)> (320)
1 0
H- (O 1) (320)

The example is a general one in the sense that we consider a multi-input/multi-output system,
non-equidistant sampling, while all system and criterion matrices are time-varying. We confine
ourselves to mentioning the value of the minimum cost given by (7g), since the computation
of (7g) requires all computations within our numerical algorithm to be performed. The
minimum value of the cost computed by our numerical procedure for example (30)—(32) is

J-smmme 558.0473 (33)

The computation is performed with the step size Atx =0:02, k=0,1,2,3,4. To verify most
of the outcome of our numerical procedure, we now consider a special case of the LQG
tracker, i.e. the LQ tracker. In this case we omit the white noise process {v(¢)} in (la) and
replace & by xk, k=0, 1,2, ..., N— 1, which we assume to be deterministic and available. Note
that in this case, given the deterministic initial state Xo, the criterion value J is uniquely
determined by the finite control sequence (1f). Thus J may be regarded as a complicated
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Table I. Optimal controls for the LQ tracker example and their differences in percentages (see text)

fo t 153 13 14
—1-1936 —2-9236 2-7360 8-3248 5-7943 x 107!
~3-6922 —4-8013 —6-3647 x 107! 6-6531 4-5704
—1-1741 —2-9223 2-7327 8-3218 5-6305x 107!
—3-6940 —4-7945 —6-5215x 107! 6-6524 4-5668

1-6267 4-3618 x 1072 1-2220 % 107! 3-6309 x 1072 2-8279
5-0631x 1072 1-4099 x 107} 2-4633 9-1988 x 1073 8-0255 x 1072

function of the finite sequence (1f) From (5) observe that given this sequence, J may be
computed through numerical integration. Application of the IMSL library routine BCPOL,
which minimizes a function of a finite number of variables, i.e. function (5) of the finite
sequence (1f) together with a numerical integration procedure to compute (5) given the
sequence (1f), i.e. the routine IVPRK from the IMSL library, allows us to compute the optimal
control which minimizes J.

The optimal control that results from our numerical scheme is obtained through simulation
of the equivalent discrete-time system, where the white noise vx is omitted, while applying the
control (7a), where X« is replaced by xx. The result is shown in the first two rows of Table I,
the first row corresponding to the first control variable. Given this control the value of J
computed through numerical integration of the deterministic system (la) using the IMSL
routine IVPRK is

J=422-6672 (34

If in equation (7g) we omit vy, and all terms involving a trace operator, we determine the cost
of the digital LQ tracker. By doing so, we obtain

J= = L,’&Z«éc‘)jg (35)

This result matches (36) within 0-04%. Having initiated the minimization with the optimal
control computed from our numerical scheme which results in the cost (34), we finally arrive
at a minimum cost value of

J=422-6556 (36)

so the improvement is negligible. The control corresponding to (36) is represented by the third
and fourth rows of Table I. Finally, the last two rows of Table I represent the differences in
percentages with the optimal control obtained from our numerical scheme. This verifies the
‘LQ part’, i.e. the feedback, feedforward and the deterministic part of the cost, computed
from our numerical scheme.

5. CONCLUSIONS

Very often digital control problems are approximated by either discrete-time or continuous-
time control problems. Digital controllers obtained from these approximations require the
sampling time to be small and constitute only approximate solutions. The digital LQG
regulator and tracker constitute solutions to real digital control problems which involve
sampled-data, piecewise constant controls and integral criteria. The numerical computation of
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the digital LQG regulator for time-varying systems for the first time allows the computation
of digital LQG regulators to control non-linear stochastic systems about pre-specified state
trajectories, e.g. a robot performing a prescribed motion or a batch fermentation process. The
numerical computation of the digital LQG tracker has never been considered before in the
literature, which in the light of computer control is remarkable. The LQG tracker can be
applied in all situations where the aim is to let a linear stochastic system track a pre-specified
state trajectory, e.g. a Cartesian robot performing a prescribed motion. The computation of
the digital LQG regulator and tracker has been programmed using PC-Matlab. The software
is available on request.

W N =
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