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asynchronously sampled systems
L. G. vaN WILLIGENBURGT and W. L. pE KONING}

The synthesis of finite-horizon digital optimal reduced-order compensators is presented,
Jfor asynchronous and aperiodically sampled continuous-time systems. The dimensions
of the compensator state are a priori fixed and may be time varying. Asynchronous and
aperiodic sumpling refers to a deterministic sampling scheme where an arbitrary, but a
priori known, number of control variables is updated, and/or an arbitrary, but a priori
known, number of outputs is sampled, at arbitrary, but a priori known, time instants.
This sampling scheme generalizes most deterministic sampling schemes considered in
the control literature. Through the use of an integral criterion the intersample behaviour
is explicitly considered in the design. As a result, frequent, synchronous and periodic
sampling is no longer necessary, which can be highly relevant in practice. Also the
synthesis enables comparison of the optimal performance of reduced-order compensa-
tors as a function of their dimensions and the sampling scheme. The synthesis is
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illustrated with a numerical example.

1. Introduction

Most digital control system design procedures put for-
ward in the control literature assume frequent, synchro-
nous and periodic updating of controls and
observations. In practice, however, this may be undesir-
able, or even impossible. In the process industry, in the
economy and in the area of environmental control, for
example, very often not all measurements are or can be
performed simultaneously, or with the same rate, but are
performed at different (possibly irregular) time instants.
The same holds for the updating of controls. Owing to
costs associated with taking measurements and updating
controls, frequent sampling may be expensive and there-
fore undesirable. The digital control of continuous-time
systems is often actually performed in an asynchronous
manner, because one analogue-to-digital (A/D) con-
verter and one digital-to-analogue (D/A) converter are
used to process different outputs and to update different
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control variables. Furthermore, different A/D and D/A
converters are often not perfectly synchronized. The
time in between consecutive measurements and control
updates may not be negligible, for example in the case of
the control of mechanical and electrical systems.
Therefore the asynchronous and aperiodic sampling
scheme considered in this paper is of significant practical
importance. Furthermore it generalizes most ol the
deterministic sampling schemes considered in the con-
trol literature. Remarkably, most of these sampling
schemes had already been put forward in 1959, by
Kalman and Bertram (1959) in their theory of sampling
systems.

Very often still, digital control problems are approxi-
mated by continuous- or discrete-time control problems.
In both cases this results in a demand for a small sam-
pling interval (Athans 1971, Van Willigenburg 1993).
“True’ digital control problems involve integral criteria,
and are constrained by the fact that the control is piece-
wise constant, assuming that zero-order holds are used
(De Koning 1980, Levis ef al. 1971, Van Willigenburg
1993). An integral criterion explicitly takes into account
the inter-sample behaviour, thereby circumventing the
demand for a small sampling interval. For example in
the area of robot control where the computational
burden on the controller is high, this is very important.
Levis et al. (1971) (see also Dorato and Levis (1971)),
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seem to be the first who transformed a digital control
problem, that is a digital linear quadratic (LQ) problem
with an integral criterion, into an unconstrained equiva-
lent discrete-time control problem. This turned out to be
a discrete-time LQ problem in which the criterion con-
tains a cross product even if the integral criterion does
not contain a cross product (Levis et al. 1971). Since
then the idea to transform a digital control problem
into an unconstrained equivalent discrete-time problem
has been used in several cases (Halyo and Caglayan
1976, De Koning 1980, Tiedemann and De Koning
1984, Van Willigenburg 1993, Van Willigenburg and
De Koning 2000). All these cases concerned synchro-
nous sampling where, at the sampling instants, all con-
trol variables are updated and all outputs are sampled.

Van Willigenburg (1995) and Van Willigenburg and
De Koning (1995) considered asynchronous and aper-
iodic sampling. To solve these problems the digital
control problem was again transformed into an
unconstrained equivalent discrete-time problem. The
fact that now not all the outputs are sampled at the
same sampling instants can be incorporated in the
equivalent discrete-time system, by adaptation of the
output equation (Van Willigenburg and De Koning
1995). Also the fact that not all controls are updated
at the same sampling instants implies that, in the equiva-
lent discrete-time system, the non-updated control vari-
ables at certain sampling instants are actually not
control variables any longer at these sampling instants,
but state variables. As a result the dimension of the state
of the equivalent discrete-time system and also the
dimension of the output vary with time. Van
Willigenburg (1995) and Van Willigenburg and De
Koning (1995) found that, if the horizon is finite,
these time-varying dimensions basically do not alter
the solution.

Recent results (Van Willigenburg and De Koning
1998, 1999) have enabled the synthesis of optimal
finite-horizon reduced-order discrete-time compensa-
tors, based on so-called strengthened discrete-time
optimal projection equations (SDOPEs). Within the
class of minimal compensators, these equations consti-
tute first-order necessary optimality conditions. Finite-
horizon minimal compensators turn out to have dimen-
sions which vary over time (Van Willigenburg and De
Koning 1998, 1999). As a result the well-known finite-
horizon optimal full-order compensator is not minimal,
while in general, in the infinite-horizon time-invariant
case, it is (Yousuff and Skelton 1984). The above men-
tioned synthesis allows for discrete-time systems with
time-varying dimensions, which is what we need in our
case.

In the case of digital optimal reduced-order compen-
sation the certainty equivalence property of the equiva-
lent discrete-time problem is lost (Van Willigenburg and

De Koning 1998, 1999). Therefore the results of Van
Willigenburg and De Koning (1995), which possessed
the certainty equivalence property, have to be extended
to be applicable in our case. This is one of the contribu-
tions of this paper. The main reasons for designing
reduced-order compensators are savings of computation
time and computer memory and improvement in the
conditioning of compensator computations. Therefore
minimal compensators are preferred over non-minimal
compensators. Our synthesis procedure allows the
designer to prescribe arbitrary (possibly time-varying)
dimensions of the compensator state. The synthesis pro-
cedure then comes up with a minimal compensator, with
maximal dimensions that do not exceed the prescribed
dimensions. However, to exploit maximally the avail-
able computer memory, it is beneficial to prescribe
a priori compensator dimensions that are compatible
with a minimal compensator. Another contribution of
this paper is to show how the sampling scheme affects
the minimal dimensions of a compensator. It provides
formulae and a tool to guide the choice of the sampling
scheme and the prescribed compensator dimensions.
These demonstrate that this choice is not straightfor-
ward.

The synthesis of digital optimal reduced-order com-
pensators is illustrated with a numerical example. To
illustrate clearly the interesting features of the synthesis,
without going into irrelevant details, the example is
deliberately taken to be artificial.

2. The digital optimal reduced-order compensation
problem

Consider the time-varying linear system
X(r) = A(1)x(t) + B(H)u(t) + v(1),
x(t)e R", u(t)eR", (la)

where {v(7)} is a continuous-time zero-mean white-noise
process given by

E{r(n)} =0, E{(v' ()} = V()8p(t —5)  (18)

and where the initial state is stochastic:

E{x(tg)} = %o,  E{[x(t9) — o][x(to) — %]} = X,
(1c)

In (1b) 6p(.) is the Dirac delta function. The system (1)
may be the result of a linearization procedure of a
nonlinear system about a possibly optimal trajectory
in which {v(7)} represents model uncertainty (Athans
1971). The system (1) will be sampled at sampling
instances ¢, i=0,1,...,N—1, ¢, >1, and the
output at these sampling instants is given by the fol-
lowing equation:



Synthesis of digital optimal reduced-order compensators 827

v(1) = Cix(1) +wiy y() € R, i=0,1,....N—1,

(24)
where C; are real matrices of appropriate dimension and

{w;} i1s a zero-mean discrete-time white noise process
that is independent of {v(7)}:
E{w;} =0, E{wwi} =Wy, i=01,...,N—1,
(2h)
where 6, 1s the Kronecker delta. After each sampling
instant the control variables remain constant through
the use of zero-order holds:

u(ty=u(t). <<ty i=01,....N—1. (3)
Similar to Van Willigenburg and De Koning (1995) the

asynchronous and aperiodic sampling can be described
by the following matrix:

o Ly - Inog
mg My . My
M ampiing = | Do Dy« Dy_y |- (4a)
ly h oy
Ey Ey . Ey,
The first element #;, i =0,1,..., N — 1, of each column

is a sampling instant, that is a time instant at which
some or all control variables are updated and/or some
or all output variables are sampled (observed). The
other elements in each column of M. all refer to
this sampling instant. The second element, that is

my, i=0/1,....N=1 0<m <m, (4b)

represents the number of control variables that are
updated. The column vectors

D;eR". i=0/1... . N-1 (4¢)

contain the indices {1,2,...,m} of all control variables.
The order in which these indices appear is unimportant
except that the indices of the updated control variables
at time 7; must precede those of the non-updated control
variables in D;. Similarly,

L i=01....N—1, 0</l</l  (4d)

represents the number of sampled outputs (observed
outputs) at times #; while the column vectors

EeR. i=01,....N—1, (4¢)

contain the indices {1,2,...,/} of all output variables.
Again the order in which these indices appear is unim-
portant except that the indices of the sampled outputs
must appear first. Note from our definition of a
sampling instant that m; = /; = 0 cannot hold for any
i=0,1,...,N—1.

The following compensator is chosen to control the
asynchronously sampled system (1)—(4):

,\A’,-+]:F‘,‘,‘:',‘+K,'y;, i=0,1,....N—1, (5(1)

W= L%, i=01,... N—1, (5b)

where &, € R" is the compensator state which has
a priori fixed dimensions nf, i =0,1,..., N, specified
by the designer, which may vary with time.
Furthermore uf € R" is the vector of updated control
variables at 7; and ) € R" is the vector of sampled out-
puts at ¢; . Note that, if at time ¢, no controls are
updated, that is only outputs are sampled, u; is empty
and so is L;. Similarly, if at time ¢ no outputs are
sampled, that is only controls are updated, y; is empty
and so is K;. Furthermore the real matrices F;, K; and L;
have appropriate dimensions. Element k, 1 <k < m; of
vector uf € R™ corresponds to an updated element of
u(t;) the index of which equals the kth element of vector
D,. Similarly element k. 1 <k </; of vector | € R"
corresponds to a sampled element of y(¢;) the index of
which equals the kth element of vector E;. Thus the
matrix  Mgmpling 1 (4a) fully determines how the
updated control variables of u(t;) are mapped on to
ui € R™ and how the sampled outputs of y(7;) are
mapped on to y; € R Compensator (5) is denoted by
(%0. FN, K™, L") where

FN:{FI'¢ i=0,1,....,N—1},
KY ={K:. i=0,1,....N =1},
LY ={L;, i=0.1,....N—1}.

2.1. Problem formulation

Given the asynchronously sampled system (1)—(4) the
optimal fixed-order compensation problem is to find a
compensator (5). with prescribed dimensions i},
i=0.1..... N of the compensator state, which mini-
mizes the criterion

Jnl(So, FV KN LYY
= E{x"(1y) Zx(13)}

+ E{J \ 'YT(’)Q(’)-Y(T) + MT(I)R([),\'([)d[}q

fo

(6a)

Q()=0, R(1)>0,

and to find the minimum value of Jy.

h<t<ty, Z=20, (6b)

3. The equivalent discrete-time optimal control
problem

To solve the digital optimal control problem, as in the

work of Van Willigenburg and De Koning (1995), the

digital optimal control problem with the piecewise con-
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stant constraint (3) on the control is first transformed
into an unconstrained equivalent discrete-time optimal
control problem. In the work of Van Willigenburg and
De Koning (1995). which treats the case of full-order
compensation, the digital optimal control problem has
the certainty equivalence property. Therefore the esti-
mation and control design were performed separately.
So-called control instants, at which some or all control
variables are updated, were distinguished from so-called
observation instants at which some or all outputs are
sampled. As a result the equivalent discrete-time optimal
control problem in the paper by Van Willigenburg and
De Koning (1995) consists of an equivalent discrete-time
system., which describes the state transitions of the
system (1)—(4) from each control instant to the next,
and an equivalent discrete-time sum criterion, which
describes the contribution (o (6) over each time interval
in between two control instants, as a function of the
state and control at the start of the interval.

In the case of digital optimal reduced-order compen-
sation. the certainty equivalence property is lost (Van
Willigenburg and De Koning 1998, 1999). Therefore
the control and estimation designs are now coupled
and the distinction between control and observation
instants, made by Van Willigenburg and De Koning
(1995), must be abandoned. Our equivalent discrete-
time optimal control problem consists of an equivalent
discrete-time system that describes the state transitions
of the system (1) (4) from each sampling instant to the
next, and an equivalent discrete-time sum criterion,
which describes the contribution to (6) over each
sampling interval [7.¢4) , i=0.1,.... N—1 as a
function of the state and control at ; . The cquivalent
discrete-time system is described by,

X =@+ I+ =001, N—1. (7a)

where
a Ay
WY (7h)

with
X; = x(1;) (7¢)

and where the vectors ! € R” ™ contain the non-
updated control variables at times /. Element
k.1 <k<m—m. of vector u € R"™™ is a non-
updated control variable of wu(r;) the index of which
equals the (m; + k)th element of vector D;. Therefore
the matrix Mg mpiine in (4) also fully determines how
the non-updated control variables are mapped on to
u! € R, Finally {v'} is a discrete-time zero-mean
white noise process given by

E{y} =0, ELhi ) = Vi (7d)

and the initial state xj) is stochastic:

E{xj} = xj.  E{xjxd } = X", (7e)

The equivalent discrete-time sum criterion is given by
In(%. FN KN LY)
— E{vi 2y

No
+ E{ Z XPOIXY 28 M + R}‘u;'}

i=0

Nol
+ Z Vi (8a)

=0

Xy =Xy (85)

since the non-updated control variables at the final time
ty > ty_; play no role in the problem and are therefore
left out of the description.

The equivalent discrete-time system (7) describes the
state transitions of the original system (1) (4) from each
sampling instant to the next, while its state is augmented
with the non-updated control variables to describe there
influence properly (Van Willigenburg and De Koning
1995). The matrices

LTV =001, . N=1. . X (9)

of the equivalent discrete-time system can all be com-
puted from

A([) B(T) V(f) In STy, No, X, Msnmp]ing‘ (10)

of the original system (1)—(4). using the procedure
described by Van Willigenburg and De Koning (1995),
but with control instants replaced by sampling instants.
Because of this replacement, if at 7; no controls are
updated, the input matrix I'{ and the control penalty
matrix R}, are empty matrices. The matrices

CORL M4, i=0.1.....N—1. (I

in the equivalent discrete-time sum criterion can be com-
puted from

A(1), B(1), V(1), O(1), R(1).

Iy <1< ty, Ms;lmpling* (12)

of the original system (1)-(4) and the integral criterion
(6) as described by Van Willigenburg and De Koning
(1995), again with control instants replaced by sampling
instants. Owing to the order reduction, full and perfect
information about the part «, that is the non-updated
control variables, of the augmented state x, is no longer
available. Since we also no longer distinguish between
control and observation instants, as opposed to the
work of Van Willigenburg and De Koning (1995), our
actual output equation must be specified in terms of the
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augmented state xi at each time i =0, 1,..., N — 1. This
output equation is described by

Vi=Cixt 4wl i=0,1,...,N—1, (13a)
where

C;l _ [C: 0] e R/,><(‘,1+m—m,). Cls c Rl,><n7 (13 b)

while {w}} is a discrete-time zero-mean white noise pro-
cess:

ELiy =0, E{w} } = Wi, (13 ¢)
The matrices

CoWr i=0.1.... N—1, (14)

which determine the actual output equation (13) are
computed from

G.w, i=01..,N-1 Msumpling‘ (15)

as described by Van Willigenburg and De Koning
(1995), but with observation instants replaced by sam-
pling instants. Because of this replacement, if at 7; no
outputs are sampled, the output matrices C?, C7 and the
covariance matrix W; in (13) are empty.

Summarizing the equivalent discrete-time optimal
control problem is given by (7), (8) and (13). As in the
work of Van Willigenburg and De Koning (1995), the
matrices (9), (11), (14), which determine this problem,
have time-varying dimensions and can all be computed
from the original problem (1)--(4) and (6) using modified
results of Van Willigenburg and De Koning (1995). As
opposed to the work of Van Willigenburg and De
Koning (1995), in the equivalent discrete-time optimal
control problem formulation empty matrices may occur.
In the remaining part of this paper, special attention is
paid to the interpretation of equations which contain
these (possibly empty) matrices.

4. First-order necessary optimality conditions and
numerical solutions

The equivalent discrete-time optimal control problem
(7), (8) and (13) is a discrete-time fixed-order compensa-
tion problem where the system and criterion matrices
have time-varying dimensions. The final term in (8)
is independent of the control and may therefore be
disregarded during the minimization. In general the
equivalent discrete-time optimal control problem is
complicated and non-convex.

Van Willigenburg and De Koning (1998, 1999) pre-
sented first-order necessary optimality conditions for the
solution of this problem in the form of so-called
SDOPEs which constitute a discrete-time two point
boundary value problem. The SDOPEs constitute a gen-
eralization of the well-known estimation and control
Riccati equations related to full-order linear—quadratic

Gaussian (LQG} design. Van Willigenburg and De
Koning (1999), who treated the more general case of
discrete-time systems with white parameters, presented
two numerical algorithms to compute solutions that
satisfy the SDOPEs. The algorithms constitute general-
izations of the algorithm that iterates the estimation and
control Riccati equations related to full-order LQG
design and therefore efficiently solve the two point
boundary value problem.

To solve the equivalent discrete-time optimal control
problem (7), (8) and (13) of the two algorithms pre-
sented by Van Willigenburg and De Koning (1999) the
iterative algorithm is presented here, since it is the most
efficient and since it is also capable of computing
multiple solutions, if these exist.

Define

mp=n+m—m;, i=01... N (16)

so n, i=0,1,..., N — 1, is the dimension of the
augmented state xi, i=0,1,...,N. Let $"" denote
the space of real n; x n; symmetric matrices. Define

XY ={xli=o0.1,..., N},

Xlesmm  i=0.1,....N, (l17a)
XY ={X7.i=0.1..... N},

XPes"m  i=0.1,....N. (17b)

X;\ = {X,‘[:OIN}‘

Xtesm o i=0,1,....N, (17¢)
XY =X i=0.1.... N},

Xtesm i=0,1,....N,  (17d)

and

yY={vli=o0.1...., N},

Y, esS"". i=0,1,....N, (I18a)
Yy ={¥7i=0,1,....N}

Y/ es"". i=0,1,....N, (I18b)
Yy ={Y’.i=0.1,....N},

Yl es™  i=0,1,....N. (18¢)
Yy ={v!i=0.1,... N},

Y/ e S i=0.1,....N. (18d)

Consider the following eigenvalue decompositions of
XX},

Uy Ay Uiy = XPXH i=0,1,....N, (19)
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arranged such that the largest positive eigenvalues
appear first on the diagonal of the diagonal matrix
A yiys. Define

ri = min (uf, rank (X7 X7)),
G,' - [1,:

i=0,1,....,N, (20a)
O]U)T(W, i=0.1,...,N, (20 b)

H; = I O]Uxx4 i=01,..., N, (20¢)

T Ie O
=G H; = Uxf,X"‘ 0 0 le‘xfa

=1, —7. i=0,1,....,N. (20d)

Consider the following nonlinear transformation:
(v )
defined by

=RV XX x5, @2

iy = etvlel - K (CyCl + WK,
+ V4 T T,
i=0,1,....N—1, Yy=X"" (22a)
Y= @ YL@~ LY, (I Y2AT + RYLy:

T g2
+ Qi+ 7LVt

i=0,1,....N=1, Y}=2Z  (22b)
Y/3+1:%(,—1W + i),

i=0,1,....N—1, Y5 =3%%. (22¢)
Yh =1 YT,

i=0.1,....N—1, Y{=0. (22d)

where
W= (& = [Ly )Y@ = TLy )
+ Ky (CY/CY + WK,
i=0,1,2,...,N—1 (234)
= (9 _KX'C) Y (9} - KnCl)
LY (YT RL
i=0,1,2,...,N—1, (23b)
Ky =atyicrcrylcs + wy)
i=0,1,...,N—1, (23¢)
Ly = (I8 Y208+ R (I Y200 + M)

i=01,...,N—1. (23d)

Note that, to compute (YIN, Yy, Yy, Y;y) = %(XIN, xy,
Xy, Xy') first (22h) and (22d) are iterated backward
in time using (20d), (23 b), (23 ¢), (23d) and then (22 a)
and (22c¢) are iterated forward in time using (20d),
(23a), (23¢) and (23d). From Van Willigenburg and
De Koning (1998, 1999) observe that
XY, XY, xY XYy = Ry, XY, XY, XY satisfy the
SDOPES Denote k iepeated appllcauons of 8? by
M xM Y x Yy = v, x xY L xM e
at t; no controls are updated, I'! and R} are empty. As
a result Ly in (23 d) is empty and also the second term
in both (22 b) and (23 b). Similarly, if at ¢; no outputs are
sampled, C} and W} are empty. As a result K, in (23 ¢)
is empty and also the second term in both (122 a) and
(23 @). To compute the equations, these empty matrices
should be skipped, or considered to be zero matrices
having dimensions compatible with those of the
remaining part of the equations.

Algorithm:

Step 1. Initialization.

]l) 21) 30 1
X; :@nv X :@n,v Xi =4,

N
i ?

X' = AL, i=0.1,... N,

where /1,, , /1 > 0 are symmetric random non-
negative n; x n, matrices and @, are zero n; X n,
matrices.

Step 2. Computation. Determine,

whether

through iteration,

(X0, X3, X5

= Tlim R (x M, x2 x x)

k—oc

exists.

Then from Van Willigenburg and De Koning (1995,
1998, 1999) the following theorem is obtained.

Theorem 1:  If the algorithm converges to a non-negative
solution, that is X! 20, X} >0, X} >0, X/ >0,
i=0,1,...,N, it generates a minimal compensator (%,
FN, KN, L") given by

F HH—I[(I) _leC —FdLX ]G;reR”zﬁrl’(”,c7
i=0,1,....N—1, (24 a)

Ki=H Ky € R i=01,... . N—1, (24b)
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Li=Ly Gl e "™, i=0,1,...,N=1, (24¢)

,{'() = H(,.{'() S R”(](, (24 (1)

’
where the compensator dimensions nf satisfy,
’

ng =1, nf=# i=1,..., N —1.

ng =0. (24¢)

This compensator is a minimal realization of a local or
global minimum of the optimal fixed-order compensation
problem. The costs of the compensator (X, F~, KV, L")
are given by

J’\' - 'Iv\'| — ']/\'3‘ (25 (1)
Ty, = Tr[Z(X} + X3)]
N—1
Y THOIX! 4 (0 + Ly RILy:,
=0 ‘ .

—2M{ Ly )X+ (25h)

Jy, = Tr[X (X5 + X§) + 0% X7

N-1
+ Y TV (VA K WK X
i=0

+ - (25 (‘)

Proof: Van Willigenburg and De Koning (1998, 1999)
treated the case of discrete-time systems with time-
varying dimensions, which we have in our application,
and Van Willigenburg and De Koning (1999) treated the
more general case of discrete-time systems with white
parameters, which we do not have in our application.
In the latter paper it is explained how the results simplify
il the system has deterministic parameters, as in our
application. In one respect our application differs
slightly from these results. If at f; no controls are
updated, I'i, R} and Ly ~are empty and, as a result,
L; in (24 ¢) is empty. This complies with the fact that u}
is empty. Similarly if at 7; no outputs are sampled, C},
W; and K, are empty and, as a result, K; in (24b) is
empty. This complies with the fact that y} is empty. Van
Willigenburg and De Koning (1998, 1999) treated all
elements of the compensator matrices as parameters
that have to be optimized. Therefore, if these parameters
are not present, they should be deleted in the problem
description and, as a result, in the description of the
first-order necessary optimality conditions. So all
terms involving an empty matrix should be deleted
from (19)—(25) or, alternatively, considered to be the
zero matrix with dimensions compatible with the
remaining part of the equations. O

If, as in theorem 1, n}“, i=0,1,...,N are the dimen-
sions of a minimal compensator for the system (7), then

nf. i=0,1,....N. must satisfy (Van Willigenburg and
De Koning 1998),

n =1, ng=0, (26a)
nE—m<nt,<nf+l, i=01....N—1  (26b)
nS<n, i=1.....N—1, (26¢)

Equation (26) describe constraints on the dimensions of
a minimal compensator for the system (7). These con-
straints will be discussed in §5. Details concerning the
numerical computation of the above algorithm can be
found in the paper by Van Willigenburg and De Koning
(1999). There it is also reported that the algorithm seems
to have the following two important properties.

(1) If the algorithm converges, it converges to a non-
negative solution, as desired.

(2) Owing to (20 @) the algorithm finds a minimal com-

pensator with maximal dimensions ns,
i=0,1,....N which do not exceed the prescribed
dimensions #j, i =0,1,..., N, of the compensator

state.

According to Van Willigenburg and De Koning (1998)
the global minimum is among these compensators, if the
conjecture in the paper by Van Willigenburg and De
Koning (1998) holds. Therefore, if the conjecture in
the paper by Van Willigenburg and De Koning (1998)
holds, (2) is also a desired property of the algorithm.

5. Design issues: choice of the sampling scheme and
the prescribed compensator dimensions

The main reasons for designing reduced-order compen-
sators are the saving of computation time, the saving of
computer memory and the improvement in the con-
ditioning of compensator computations. Therefore
minimal compensators are preferred over non-minimal
compensators. Although the algorithm automatically
generates a minimal compensator with maximal dimen-
sions n, i=0,1,...,N that do not exceed the pre-
scribed compensator dimensions nj, i =0,1,..., N, to
exploit maximally the available computer memory, it is
advantageous to take into account a priori, the restric-
tions (26) on the dimensions of a minimal compensator
for the system (7). In other words, it is advantageous to
prescribe compensator dimensions #j, i=0,1,...,N
that satisfy (26) with n | replaced by .

The sampling scheme is often partly dictated by con-
straints imposed by the system and control equipment.
Usually, however, some freedom remains as to the
choice of a possibly asynchronous and aperiodic sam-
pling scheme. One of the highly interesting features of
the digital optimal compensator design procedure pre-
sented in this paper is that it allows the designer to
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compute the performance for all kinds of different deter-
ministic sampling schemes. This enables optimization of
the sampling scheme. Furthermore, if the sampling
scheme is asynchronous, the approach reveals how the
sampling scheme is linked to the dimensions of a
minimal compensator. This link is described by (16)
and (26).

According 1o (16) the dimension of the state of the
augmented equivalent discrete-time system (7) varies
over time with the number of non-updated control vari-
ables at each sampling instant. Equation (26 ¢) states the
familiar fact that it is useless to design a compensator
whose dimension of the state, at any time
i=0.1..... N, exceeds that of the system (7).
Equation (26 h) states that the changes of the dimension
of the state of a minimal compensator for the system (7)
are bounded from above and below by the number of
updated control variables and sampled outputs. So
besides (26 ¢), (26 5) and (26 @) further limit the possible
dimensions of the state of a minimal compensator for
the system (7).

Summarizing (16) and (26) together must guide the
selection of the sampling scheme and the prescribed
compensator dimensions. Table 1, which is introduced
and explained in the next section, is a useful tool to
guide this selection.

6. A numerical example

The numerical example presented in this section is
chosen so that it contains the key features of the prob-
lem. The system and criterion contain time-varying
matrices and the sampling scheme is asynchronous and
aperiodic. The problem data are as follows:

0.3+ 0.2sin (0.57tr) 0
A(r) = ;
S 0.5+ 0.4 cos (0.5mr)
sin (37 1
B(1) = G0 ,
—1 cos (31)
1.5+ cos (2mt) 0.2
V() =0.05 .
0.2 1.3 + sin (nr)
(1 0.2 0.1
.\_'() = N X — N
R 0.1 03
[ —sin (2w, 1
C,' = ( ) N
| -2 3cos (mt;)
W [0.7 +0.5cos (nt;) 0.15
L 0.15 [ +0.5cos (4nr,) |

2 + sin (21) 0.5
(1) = . .
0.5 2 +sin (21)
2 4 cos (21) —0.5
R(1) = 0.01 ,
—0.5 24 cos(2r)
[ 10 -1
Z = .
| —1 10
[0.0 02 05 08 09 14 1.5]
1 0 2 1 0 0 1
1 1 1 2 1 1 1
M.\lepling = 2 2 2 1 2 2 2
0 1 2 0 1 2 0
1 1 1 | 2 1 1
| 2 2 2 2 1 2 2 ]
If\' - T7 - 21

The example is a modified version of the example pre-
sented by Van Willigenburg and De Koning (1995). The
sampling scheme 1is identical. Compared with the
example in the work of Van Willigenburg and De
Koning (1995) the system matrix A(¢) now has positive
real eigenvalues for all ¢, equal to its diagonal elements.
As a result the system is unstable, the problem is
numerically more challenging. and the performance is
more sensitive to order reduction. Non-zero off-diag-
onal elements in Q(r), R(¢) and Z have been introduced.
Finally V' (1), R(t) and Z have been scaled, again to
increase the sensitivity of the performance to order
reduction. From Mg, in. Observe that. for example,
at 1y = 0.0, only the first control variable is updated
while no outputs are sampled. The non-updated control
variable at 7y = 0.0 is equal to zero. At 1, = 0.9, for
example, no control variables are updated and only
the second output is sampled.

The optimal full-order compensator is computed from
the algorithm in the paper by Van Willigenburg and De
Koning (1995), which uses results from Van
Willigenburg (1993), with an integration step size of
0.01. The optimal full-order compensator can also be
obtained from our algorithm if we replace (20) by
(Van Willigenburg and De Koning 1998),

:»C = n;, (27 a)
G,':H,':T,':[”l_. (27b)

n

The minimum costs, in both cases, are computed to be
219.98. It we prescribe,

i =n;=n-+m-—m;,
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that is 3, 4, 2, 3, 4, 4, 3, 2, 2 respectively, then our
algorithm, with an integration step size of 0.01 (Van
Willigenburg 1993, Van Willigenburg and De Koning
1995), computes a minimal realization of the optimal
full-order compensator which achieves the same per-
formance (Van Willigenburg and De Koning 1998).
The dimensions n;". i=0.1,..., N of the compensator
state of this minimal realization are specified in the first
row of table 2. as explained below. The compensator
matrices, together with the compensator matrices of
the other compensators mentioned in table 2, are listed
in appendix A.

In the case of reduced-order compensator design,
table 1, which relates to the numerical example. is very
helpful in specifying the prescribed compensator dimen-
sions which, as argued in the previous section, should
preferably satisfy (26). The first row of table | contains
the sampling instants and final time. The second row
specifies the maximum value of the dimension of the
compensator state according to (16), (26 ¢) and (26 ¢).
The third and fourth row visualize the restrictions
imposed on the change of the dimension of the compen-
sator state as described by (26 ). The third row specifies
the maximum increase in the compensator dimension
when going from one sampling instant to the next, as
indicated by the arrows. These numbers equal /.
i=0,1,....N — 1, respectively. The final row specifies
the maximum increase in the compensator dimension
when going from one sampling instant to the previous
sampling instant, as indicated by the arrows. These
numbers equal n;, i=0,1,....N —1, respectively.
From table 1, one can deduce that the dimensions of a
minimal realization of the optimal full-order compen-
sator, that is the maximal dimensions allowed by table
1, are in accordance with the first row of table 2. Table 2
lists the outcome of the algorithm for all possible com-
pensator dimensions that satisfy (26). These can be
deduced from table 1. In our example there are only
three distinct possibilities because the dimension of the
compensator state is not allowed to be zero, except at
i = N. Although in table 2 everywhere 1 < n holds, this
does not hold in general. To see this, consider the same
example but now with one control variable updated at
t; = 0.8, that is m; =1, and one output sampled at

Table 1. Table to determine the prescribed compensator
dimensions.

0.0 0.2 0.5 0.8 0.9 1.4 1.5 2.1

| 4 2 3 4 4 3 0
+0 +1 +2 +0 +1 +2 +0
+1 +0 +2 +1 +0 +0 +1

Table 2. Dimensions and performance of all minimal reduced
order compensators for the example (the compensators them-
selves are listed in appendix A.

nj, i=0.1,..., N N

L1222, 1.1 1.0 219.98
L2 1,110 221.40
LLLLLLLO 231.81

ts = 1.4, that is /5= 1. Then, after modification of
table 1. it follows that 1, 1. 2, 3. 2. 1, I and 0 are the
maximal dimensions of the compensator state, that
satisfy (26).

Finally, if at all sampling instants all controls are
updated and all outputs are sampled, the minimum
costs, obtained with a minimal realization of the optimal
full-order compensator, computed from our algorithm,
equal 34.428. The reduction in the costs is due to the
increased output information and control possibilities.
These costs were also computed with the algorithm pre-
sented by Van Willigenburg (1993), which applies to
synchronous sampling. The costs are identical up to
the mentioned decimals.

7. Conclusions

The development of digital control system design pro-
cedures for asynchronous and aperiodically sampled
systems circumvents the demand for frequent, synchro-
nous and periodic sampling. This is of significant prac-
tical importance. The synthesis of finite-horizon digital
optimal reduced-order compensators was presented in
the case of asynchrounous and aperiodic sampling.
Among others, the synthesis applies to situations
where a digital optimal compensator is designed to con-
trol a nonlinear continuous-time system, which is
sampled in an asynchronous manner about a possibly
optimal state-trajectory (Athans 1971, Van Willigenburg
1991). In this case the compensator design is based on
the linearized dynamics about the trajectory which con-
stitute a continuous time-varying linear system. The
digital optimal full-order design (Van Willigenburg
and De Koning 1995) that possessed the certainty
equivalence property was extended and modified to
deal with our problem, which does not posses the cer-
tainty equivalence property. Furthermore the relations
between the sampling scheme and the dimensions of a
minimal compensator, which vary over time, were
described explicitly. Based on these relations, a table
to guide the choice of the sampling scheme and the
prescribed compensator dimensions was proposed. The
use of this table shows that the choice of both is not
straightforward. The synthesis of optimal reduced-
order compensators and the choice of the sampling
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scheme and the prescribed compensator dimensions was
illustrated with a numerical example.

The synthesis of the digital optimal full-order com-
pensator (Van Willigenburg and De Koning 1995),
could easily be adapted to situations where the available
information to compute the control updates at the
current time consists of all measurements up to and
including the current time. In our case we cannot
simply replace the Kalman estimator by the Kalman
filter because the certainty equivalence property is lost,
so the control and estimation are coupled. Because of
this, it 1s also not easy to incorporate the situation were
measurements, performed at some sampling instant, are
not yet available at the next sampling instant, e.g. due to
analyses that is involved.

The choice of sampling schemes is often performed in
an «ad hoc manner or is based on rules of thumb. The
synthesis presented in this paper allows the engineer to
compute the influence of the choice of the sampling
scheme and also of the compensator dimensions on
the compensator performance. This enables selection
of the sampling scheme and the prescribed compensator
dimensions in an appropriatc manner. Finally observe
from recent results of Van Willigenburg and De Koning
(1998, 1999) that the approach presented in this paper
also applies to linear time-varying continuous-time
system with white stochastic parameters. Plant par-
ameters themselves may be white. They may also be
assumed to be whitc, to design a robust compensator.

Appendix A: Optimal compensators for the example

In this appendix the three optimal compensators com-
puted by the algorithm, the dimensions and costs of
which are mentioned in table 2. are listed. Note that
these compensators are unique up to basis transforma-
tions of the compensator state space at each discrete
time instant /=0.1,..., N. as described by Van
Willigenburg and De Koning (1998).

A.l. Compensator 1, a minimal realization of the
optimal full-order compensator

ie i=0.1,...,N:1,1.2.2.1.1,1,0,

Fo=-29575, Ky=1[] Ly=—2.5758,

—1.0631 0.3347
F = . K= . L= [ L
0.0462 0.3889

Fz =
K: =
L‘_) =
| 4.2974

Ly =1[0.1543 1.11

Fy=1.0684, K4y =0.0116,

88).

[—2.4613 —1.1795]
|- 1.5739 —0.8958 |
[—0.2334  —0.0677 |
| 11471 —0.5482 |
[—2.2888 —1.5256]
0.7565 |
Fy = [-0.0803 1.8175].

Ky=11],

Ly=11],

Fs=0.8210, Ks=[ 02819 03505, Ls—|
F6 - [ L K(, = [

A2

Yo
Fy
£

A3

Compensator 2
ni, i=0,1,
= 1.4142,

|, L= 1.6985.
N L2001, 1,0
LO = —]7019,

=23106. Ky=] ],

= 1.3515, K, =0.3983,

—2.2953
—1.5190

—2.2472
| 38616 |

=[-0.0795 1.8190],

=10.1449 1.136

= 1.0576, K, = —0.0238,
s =—0.7812, K5 =1[0.2733

=1 Ke=1],

. Compensator 3
n;, i=01,.
Xo = 1.4142,
Fy =2.6762,
Fy =—1.1696,
Fy = —3.3880,

Ll = [ ]
~0.3552  —0.1046
| 10789 —0.6015
Ky=1]
4],
L4 = [ ]7
~0.3459), Ls
Ly = —1.7946.
CUND 111,201,011, 0,
K, =03705, L, =[]
K> =[1.7684 — 1.0885],

!

L.
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L, =[-2.1700 4.0910],
F;=1.1630, Ky=[] L;=0.6197,
Fy,=0.5841, Ky=-0.2342, Ly=]],
Fs = 09534, Ks=[-0.4467 0.4896]. Ls=1|],
Fo=]] Ke=][] Lq¢=16913.
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