am CQ(AOU el iﬂ,h_q}a
\J

International Journal of Systems Science, 2000, volume 31, number 4, pages 479487

L. G. VAN WILLIGENBURGT and W. L. DE KONING]

The transformation into discrete-time equivalents of digital optimal control problems,
involving continuous-time linear systems with white stochastic parameters, and quad-
ratic integral criteria, is considered. The system parameters have time-varying statis-
tics. The observations available at the sampling instants are in general nonlinear and
corrupted by discrete-time noise. The equivalent discrete-time system has white sto-
chastic parameters. Expressions are derived for the first and second moment of these
parameters and for the parameters of the equivalent discrete-time sum criterion, which
are explicit in the parameters and statistics of the original digital optimal control
problem. A numerical algorithm to compute these expressions is presented. For each
sampling interval, the algorithm computes the expressions recursively, forward in time,
using successive equidistant evaluations of the matrices which determine the original
digital optimal control problem. The algorithm is illustrated with three examples. If the
observations at the sampling instants are linear and corrupted by multiplicative and/or
additive discrete-time white noise, then, using recent results, full and reduced-order
controllers that solve the equivalent discrete-time optimal control problem can be
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The equivalent discrete-time optimal control problem for time-
varying continuous-time systems with white stochastic parameters

computed.

1. Introduction

In order to design and study digital control systems, that
is continuous-time systems controlled by digital com-
puters, it is convenient to convert a digital control prob-
lem into an equivalent discrete-time control problem
(Levis et al. 1971, Halyo and Caglayan 1976, De
Koning 1980). The continuous-time systems considered
in this paper have white stochastic parameters with time-
varying statistics. In addition the systems may be cor-
rupted by additive white noise. Plant uncertainty is often
represented by additive noise only. If the parameter
variations are large, then the representation of uncer-
tainties by multiplicative noise or more generally, by
stochastic parameters is more realistic. Among others,
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continuous-time systems with stochastic parameters
arise in the field of chemical reactors (Lignon and
Amudson 1981a,b, Wagenaar and De Koning 1989).

The design of compensators for nonlinear systems
that have to track (optimal) trajectories, is often based
on the linearized dynamics around the trajectory
(Athans 1971). These dynamics constitute a time-varying
continuous-time system and hold only on the trajectory
itself. Stochastic parameters may be used to represent
the uncertainty in the linearized dynamics if, during
control, the state deviates from the trajectory. In this
case the continuous-time system has stochastic par-
ameters with time-varying statistics. The criterion is a
quadratic integral criterion which explicitly considers
the intersample behaviour of the (linearized) contin-
uous-time system. The latter circumvents the demand
to choose a sufficiently small sampling time which, in
some applications such as robotics, may result in lack
of computation time.

The transformation of digital control problems into
equivalent discrete-time control problems has been con-
sidered for several types of digital optimal control prob-
lems (Levis et al. 1971, Halyo and Caglayan 1976,
De Koning 1980, Tiedemann and De Koning 1984,
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Van Willigenburg, 1992, 1995, Van Willigenburg and De
Koning 1992, 1995). Most digital control problems are
concerned with time-invariant linear systems, having
deterministic parameters, quadratic integral criteria,
and deterministic sampling. Notable exceptions are the
studies of Halyo and Caglayan (1976), Van
Willigenburg (1992) and Van Willigenburg and
De Koning (1992), who consider time-varying linear
systems, Van Willigenburg (1995) who considers general
nonlinear systems and integral criteria, De Koning
(1980), who considers stochastic sampling and
Tiedemann and De Koning (1984), who consider
linear systems having white stochastic parameters with
constant statistics. Tiedemann and De Koning (1984)
focused mainly on the computation and interpretation
of the equivalent discrete-time system. Two alternative
computations of the equivalent discrete-time system
were considered. The computation of the equivalent dis-
crete-time sum criterion was not fully addressed. As
demonstrated by Van Willigenburg (1992) the time-
varying nature of the linear system complicates the
numerical computation of the equivalent discrete-time
optimal control problem.

In this paper it is shown how, using the results of Van
Willigenburg (1992), the results of Tiedemann and De
Koning (1984) can be extended to systems with time-
varying statistics and integral criteria with time-varying
cost matrices. A method to compute the equivalent dis-
crete-time system and sum criterion is presented in
detail. The equivalent discrete-time system has white
stochastic parameters with time-varying statistics and
the equivalent discrete-time sum criterion is quadratic
and has time-varying cost matrices. Therefore, if the
observations at the sampling instants are linear and cor-
rupted by multiplicative and/or additive discrete-time
white noise, finite-horizon full and reduced-order com-
pensators, which solve the equivalent discrete-time
optimal control problem, can be computed using the
results recently presented by Van Willigenburg and De
Koning (1998, 1999).

2. Digital optimal control problem

In this section the digital optimal control problem for
time-varying linear continuous-time systems with white
stochastic parameters and quadratic integral criteria is
stated. Since our interest is mainly the design and com-
putation of digital optimal full and reduced-order con-
trollers, the observations at the sampling instants are
assumed to be [linear. From comparable results,
Tiedemann and De Koning (1984) observed that, as
far as the transformation into an equivalent discrete-
time optimal control problem is concerned, they may
as well be nonlinear.

Consider a digital control system consisting of a con-
tinuous-time system connected to a digital computer by
means of a sample and hold circuit at the input and a
sampler at the output. The sampling instants of both
samplers are ty,¢;,...,fy. At time ¢ the computer
sends the control u(s;) and receives the observation
»(%;). Within the interval [z,7;,,) the next control
u(t;,) has to be calculated on the basis of observations
¥(t) ..., »(t;) and the controls u(ty),. .., u(z;).

The continuous-time system, the sample and hold
operation and the observations at the sampling instants
are described by,

dx(¢) = dA(6)x(r) + dB(r)u(r) + dB(1),
xt € [ty 1y}, (la)

tettipy), i=0,1,2,...,N—1, (1b)

u(t) = u(t,),
y(ti):Ci'x(ti)+wi7 i:071727"'7N_17 (16)

respectively where x(7) € R" is the state, u(r) € R™ is the
control, y(t;) € R" is the output and w; € R is white
observation noise with time-varying statistics, character-
ized by

E{(w; — E{w})(w; — E{w,})'} = W,.
(1d)

E{Wi} = Oa

The matrices A4(¢) and B(t) are of appropriate dimension
with entries being white stochastic variables at every
time ¢. The processes {A4(1), {p < t <y}, {B(2), 1y <
t < ty} have independent increments and known time-
varying first and second moments. The first moments of
these processes are defined by A(z), B(t) where the bar
denotes expectation. Let A(¢) = A(1) — A(t) and B(1) =

B(?) — B(t) and consider the decompositions,
A(1) = A(1) + A(r), dA(1) = A(t)dt + dA(1), (2a)
B(t) = B(1) + B(t), dB(1) = B(r)dt + dB(1), (2b)

Then the second moments of the processes
{A(2), tg < t < ty}, {B(1), to < t < 1y} are defined by,

E{dA(r) ® dA(t)} = V(1) ds, (2¢)
E{dA(n) ® dB(0)} = V** (1) dt, (2d)
E dB(r) @ dA(1)} = VB(1) ds, (2e)
E{dB(1) ® dB(r)} = V*(1)d1, (2f)

where ® denotes the Kronecker product (Bellman 1970).
Note that our notation of a continuous-time system with
white stochastic parameters is quite different from the
usual one of sums of matrices multiplied by scalar sto-
chastic processes. However, this notation is more gen-
eral and more concise than the usual notation. Observe
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that the processes {A(1), 1o < t <ty}, {B(1), 1, <
t < ty} are not necessarily independent. The process
{B(1), to < t <ty} is a real zero-mean independent
increment’s process of appropriate dimensions with
known time-varying first and second moment:

E{B(0} =0, E{dB(1)ds" (1)} = V7(1), V(1) 20.
(3a)

The initial condition of the state x(#,) is xo, with known
mean and covariance:

E{x(to)} = X9, E{(x(to) — %o)(x(to) — %o)" } = V™.
(3b)

The matrices C; are real, random and of appropriate
dimension. Let C;=C;—C; then the process
{C;, i=0,1,...,N} has known time-varying first and

second moments given by C; and
CRC=CeC+CoC=CoC+ V" 4

respectively. The initial condition x(#) and the pro-
cesses {6(2), 1o <t<tyn}, {A(1), 1o <t <1y},
{B(1), 1o <t<ty}, {wi, i=0,1,...,N} and
{C;,i=0,1,...,N} are mutually independent, except
that {A(1), 1o <t <1y} and {B(1), 1, <t <ty} may
be dependent.

Consider the integral criterion

J = E{x"(ty)Zx(ty)}

+ E{Jrﬂ (X" (NQ(0)x(1) + u" () R(1)u(1))] d[}7

Ty

(5)

Let Y; denote the observation sequence {y(y),...,»(#;)}
and U; the control sequence {u(t),...,u(t;)}. Note that
the control u(zy) does not influence the value of the
criterion (5). Assume that u(z;) is a deterministic func-
tion of the measurements and controls preceding ¢;, that
is u(t;, Yi_1,Ui_y), i=0,1,2,...,N—1. Fori=0, U_,
and Y_; are both empty sets. Then the digital optimal
control problem is to determine the functions (the con-
trol law) u*(1;,Y,_1,U;_y), i=0,1,2,...,N—1 that
minimize J and to find the minimal value J*. The dif-
ference between this optimal control problem and the
time-varying finite horizon digital linear quadratic
Gaussian (LQG) problem is that the parameters of the
plant, instead of deterministic time functions, are white
stochastic processes.

3. Equivalent discrete-time system

In this section the continuous-time system is trans-
formed to an equivalent discrete-time system with

white stochastic parameters. Explicit expressions are
derived for the first and second moments of these par-
ameters. The zero and identity matrix are denoted by 6
and /.

The sampling process {7,i=0,1,2,...,N} is
assumed to be deterministic and known and the sam-
pling periods T;=1t,,—¢t, i=0,1,2,...,N—1 are
positive, that is 7; > 0. The solution of the system
(1 @) with control (15) is given by

x(t) = &(t,t;)x; + T(¢, t)u; + v(1, ), (6)

where t€[t,t1), i=0,1,2,...,N—1, x;=x(¢),
u; = u(t;) and @ is the transition matrix corresponding
to the homogeneous stochastic system

dx(¢) = dA(6)x(z), 1€ [ty tn], (7)

and defined as the solution of the homogeneous sto-
chastic matrix differential equation,

de(t,s) = dA(r) (1,s), P(s,s) =1, t,5€ [ty,ty]
(8)
Furthermore,
s(t.0) = | @(t,5)45( o)

If t = t;;, then (6) may be written as,
xi+|:¢ixi+Fiui+vi, i=l,2,...,N—l, (]O)

where  x; = x(tiy1), w=ulty), D=ty t), I
=TI (ti,t;) and v; = v(t,., ;). The system (10) is the
equivalent discrete-time system. Furthermore, similar
to the work of Tiedemann and De Koning (1984),

E{v(t,1;)} =0, (11 a)

i

E{(t, v (1,1:)} = J_d)(t’ VAP (t,5)ds = VP(1, 1),

1

(11b)

and, with t = 1;,,
E{vi} = 0, (12(1)
E{vpI}y =V’ (12b)

where V,-B = Vﬂ(t,»+1,t,-). From (12) note that
{vi, i=0,1,2,...,N — 1} is discrete-time white noise
with covariance V7.

In the remaining part of this section a matrix K with
dimensions » x m is denoted by K,,,. The dimension
indices are deleted if no confusion is possible. To
derive explicit expressions for the first and second

moments of @; and I'; define the following matrices:
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Py (1) = A1) ® A(1) + V(1) (13aq)
Wom (1) = I, ® B(t) + V*2(0), (130)
W (1) = B(t) @ 1, + VP (1), (13¢)
Xpn (1) = A() @ 1, (13d)
Xt (1) = 1, @ A(1), (13e)

Ly, (1) = B(1) ® 1, (13f)

L (1) = 1, @ B(2), (13g)
Zpn, (1) = VPE(1), (13h)

where & in (13 a) is the Kronecker sum (Bellman 1970),
that is

A() D A(t) = A() R I, + I, ® A(1). (14a)
and where
ny =nn, Ny =nm, H3=mm. (14 5)
Define
-Pnln,(t) nlnz(t) Wr%ln (1) an;([)—
1 1
F([) _ gnzrn annz(l) enznz ann;( )
Ony  Onmy Xy (1) Lip (1)
L 9n3n1 enwz 0’!3"2 9n3n3 _
(15)

and let @ denote the transition matrix of the homoge-
neous time-varying deterministic system,

xp(t) = F()xp(1), 1€ [t 15]- (16)

Then, according to Graham (1981), the first and
second moments of @; and I';, as in the work of
Tiedemann and De Koning (1984), follow from the
equality, (see equation 17), where (@ @17, , (fi11,1)
for example denotes @(ti1,4;) @ ['(li41,4),,, Since
F(t) in (15), and therefore ®(7;,,,1;), are fully deter-
mined by the known first and second moments of the
original continuous-time system (1) the computation of
the first and second moments of @; and I'; comes down
to the computation of the transition matrix of a homo-

(¢®¢)n|n|( l+l’ri) (d)®r)n]nz( I+l7ti)

9n2m (5( lit1, ) ® Im)nzm

nyhmy 9”2"2

L 9n3n1 6"3"2

(r ® (D)n1n2<ti+]7 ti)
erzznz (T(ti+l ’ ti) ® Im)nzm
([m®¢(tt+lvt))n 103 (Im

nyny 9n3n3 J

geneous deterministic time-varying system. From Van
Willigenburg (1992) this computation can be performed
recursively forward in time.

4. The equivalent discrete-time optimal control
problem and its numerical computation

In this section the continuous-time integral criterion of
the digital optimal control problem is transformed to an
equivalent discrete-time sum criterion. Subsequently the
equivalent discrete-time optimal control problem
(EDOCP) is stated. Finally the numerical computation
of the EDOCEP is treated.

Define, similar to the work of Tiedemann and De
Koning (1984),

Qi) = [ TRIQWT ) dt, Qi) >0,
| (184)

Mt1.0) j'*'dﬂ O (1) dr, (185)

j (0 + L0 dr,  (18¢)

Rti:1,1) 0

ity = [ Ve o (184)

i

Then the equivalent discrete-time sum criterion is given
by

N-l
J = E{x\NZxy} + E{Z x!Qix; + 2xT Mo, + u,-TR,vu,}
i=0

N-1

where QI_Q(ZI+17 ) M M(l+17 ) R _R( 1+1st>
and 7; = n(t;41,1). Although the integral criterion (5)
does not contain a cross-product, similar to the work
of Levis et al. (1971), Halyo and Caglayan (1976), and
Van Willigenburg and De Koning (1992), in (19) a cross-
product 2x M, appears. This is due to the piecewise
constant constraint (1) on the control. The last term
in (19) is not a function of {uy,...,uy_;} and there-

(F®F)n1n3(ti+]7li) 1

) = Pp(tiy, ;) (17)
® I'(ti, 1))

nan3
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fore may be dropped in the minimization. Denote y(¢;)
by y; and let Y; denote the observation sequence

{yo,.--,»i1} and U; the control sequence
{ug,...,u;_ }. Assume that u; is a deterministic function
of Yi—l7 U,'_], that is u,-(Y,-,l,U,-,l), l':(),l7
2,...,N—1. Then the following control problem is

obtained. Given the system (10) find the deterministic
functions  (control law) u;j(Y,_,,U;_;), i=0,1,
2,...,N —1 for the system (10) that minimize J, given
by (19), and find the minimum value J*. This control
problem has exactly the same solution as the original
digital optimal control problem and therefore is called
the EDOCP. The difference between this optimal con-
trol problem and the time-varying finite-horizon dis-
crete-time LQG problem is that the parameters of the
plant, instead of deterministic time functions, are white
stochastic processes.

To compute numerically the EDOCP from the orig-
inal digital optimal control problem the integrals (11 b),
(18) and the right hand side of (17) have to be evaluated.
As in the work of Van Willigenburg (1992), which treats
the numerical computation of the EDOCP for digital
LQG problems where the system has deterministic par-
ameters, these evaluations can be performed recursively
forward in time, using successive equidistant evaluations
of the matrices of the original digital LQG problem. The
method proposed by Van Willigenburg (1992) uses a
piecewise constant approximation of the deterministic
time-varying system, the scaling and squaring method
in combination with a second-order Taylor expansion
to compute the matrix exponential and the trapezoidal
numerical integration scheme. The error using the tra-
pezoidal integration scheme is of equal order to that
related to scaling and squaring. Furthermore the combi-
nation of these computational schemes allows for the
recursive forward-in-time computation. Therefore a
more sophisticated integration scheme is not used in
this case.

In the following the computation of the matrices of
the EDOCP over one sampling period [t;, ;1) will be
considered. Within this time interval S; time steps of
length Ar are taken where S;, which determines the
accuracy, is a sufficiently large integer.

First note that in the integrals (114) and (18) terms
like ®XI'T and ®TXT for some matrix X occur. They
may be written as,

OXTT =5t (PRT)st (X)), (20 a)

STXT = st [(T®®)" st(X)] (20b)
where st denotes the stack and st™' the inverse stack
operator. The stack operator changes every matrix
into a column vector in which the columns of the
matrix are stacked in their order of appearance, with

the first column on top. The inverse stack operator,
denoted by st™!, recovers the original matrix from this
column vector (Bellman 1970). To do this it must be
given the column length, that is the number of rows,
of the original matrix.

The trapezoidal integration rule is based on the fol-
lowing approximation of the integral of a general matrix
function X (¢):

ti+L At
J X(t)dt

!

i

L—-1
zg <X(t,-) + X(t;+ L Av) +22X(t,»+kAz)>,

L=23..S, (2la)
and, for L =1,
t+At At
J X(0)dim S XG) + X6+ A (21)
t

From (21) the integral can be computed recursively for-
wards in time as follows,

ti+L At At

i+ (LA+1) At
J X(t) dl+7

X(t)dt%j

2 1
X (X(t; + LAL) + X[t; + (L + 1)A])
L=23,...8, (22

Consider the following piecewise constant approxima-
tion F'(¢) of F(r) in (15):

F'(t) =3{F(t; + LAt) + Flt; + (L + 1) Aq]},
telt;+ LA+ (L+1)Ar),
L=0,1,2,....8—1. (23)

Then the transition matrix of the homogeneous time-
varying deterministic system,

x}?'(t) = Fl(t)x[:’(t)a

which approximates the system (16) equals,

e [ti7[i+|)7 (24)

L-1
Dpi(1;,1;+ LAL) = [ exp (F'(t; + k Ar) Ad),
k=1

L=1.2,..5. (25

If Ar is sufficiently small, the following second-order
Taylor expansion may be used to compute (25):

exp [F'(t; + k At) At] =~ I + F'(t; + kAt)Ar
+0.5F(1; + k Ar) AP, (26)

As can be seen from equations (15), (17), (22), (23), (25)
and (26) the first and second moments of @;, and I'; and
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the integrals (18) can be computed recursively forwards
in time. The computation of the integral in (115)
deserves further attention since this integral is not of
the form (21). In the case of (11 b) the trapezoidal inte-
gration rule results in the following approximation,

VPt + LALL) ~ % <srl{(<p ® D)

X (t; + LAt 1) st[V(1)]}

+ V2(t; + L A1)
L—1
+2) st {(@z @)

k=1

x (t; + LAt + k At)
x st [V(1; +kAz)]}),

L=23,...S, (27a)
and, for L=1,

Vot + AL ~ %(st*‘ (&0 ®)(1; + A, 1;) st [V (1)]}

+ V31, + A1)). (27b)

Consider the following well known property of transi-
tion matrices,

d(t; + (L+ 1)Ar 1)
=@t +(L+1)At,t; + LAOD(t; + LA ¢t;). (28)
The property (28) implies the following property,

(@ d)(1; +

(L+ DAL L) = (¢ 2 D)
x (t; + (L + DAt t; + L At)

x (@ ®)(t; + LALL). (29)

Using (27) and (29) the integral (11 &) is computed recur-
sively forward in time as follows,

VOt + (L+ 1) AL =st™ {{@@ &) (1, + (L+ 1)
X At t; + L At) st
x [VP(t, + LAt 1))}

—l—%(st_l {(P@ )

X (t; + (L+ DA t;+ LAf) st
x (VAL A} + VP[(L + 1)Ad])
(30)

From (17) and (23) observe that & @ &(t;,+ (L +1)
At, t; + L At) in (30) is approximately the first diagonal
block of the matrix exp [F'(#; + L At) At] which is com-
puted in order to compute (25). Summarizing, the inte-
grals (115), and (18) and the first and second moments
of @, and I';, and the EDOCP, can be computed recur-
sively forwards in time using successive equidistant eva-
luations of the matrices which make up the original
digital control problem.

5. Numerical examples

In this section, three numerical examples are pre-
sented. The first example concerns a time-invariant
digital control problem and is used to check the results
of our algorithm against the results obtained with the
algorithm for time-invariant digital control problems
(Tiedemann and De Koning 1984). The second
example concerns a time-varying digital control prob-
lem, where the system has deterministic parameters.
Systems with deterministic parameters are a special
case of systems with white stochastic parameters. This
example is used to check the computation of the
EDOCP against the results obtained with the algorithm
presented by Van Willigenburg (1992). Finally the
third example deals with a time-varying digital control
problem where the system has white stochastic par-
ameters.

In example 1 the following choices of dA(r) and dB(r)
in (2) have been made,

dA(1) =

02 0.2 0.2
dy(1), dB(r) = [

:| dv(1).

0 04 0.3

(31a)

In (31a) the process {v(¢), fp < t <ty} is a scalar-
independent increments process with zero first moment
and unity second moment:

El(0} =0, E{dv)dy' ()} =1.  (31b)
As a result the stochastic processes {A(1), 1o < t < ty},
and {B(1), ty < t < ty} are fully correlated. Note that
(31) is an example of a description that uses sums of
matrices multiplied by scalar stochastic processes. The
two matrices in (31) translate into the matrices V44,
vAB B4 and VB2 in example 1. Although in this case
(31) might be considered a simpler description, note that
the sums of matrices and also the number of scalar
stochastic processes that they multiply, can be extended
arbitrarily, while the dimensions of V44, 48 124 and
VB8 remain the same.
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Example 1:
[1 0.5 1
A1) = , By=| |,
10 2 2
[0.04 0.04 0.04 0.04]
0O 008 0 0.08
v = ,
0 0 0.08 0.08
L 0 0 0 0.16
[0.04]
0.06
VBB(t) — ,
0.06
1 0.09 |
[0.04 0.047 [0.04 0.04]
0.06 0.06 0 0.08
vAR(r) = , V() = ,
0 0.08 0.06 0.06
| 0 0.12] | 0 0.12]
0.08 0 ]
Vg(t) = )
| 0 0.08 |
1 0.1 0
XO = 3 VXO = )
|1 0 0.1
(1 0 01 0
Q(t) = ) R([) =0 57 Z = s
10 2 0 0.1
Ci=[1 0, V=01 0 0 0],
w,=0.1, i=0,1,2,...,N-1
t; =0.05, i=0,1,2,...,N. O

The EDOCP of this time-invariant digital control prob-
lem, computed using the algorithm put forward in the
previous section with S; = 50, i =0,1,2,..., N, is given
by,

éiz

0 1.105 0.105

1.051 0.0269} - 1:0.0526}
’ F = »

[1.107 0.0307 0.0307 0.00325
0 1.166 0 0.348
q)i ® (pl = 3
0 0 1.166 0.348
0 0 1.231
[0.0577 0.003957
0.114 0.00663
¢i ® F, = i
0 0.0631
L O 0.124 |
[0.0577 0.003957
0 0.0631]
Fi @ (pl = )
0.114  0.00663
L o 0124 |
[0.005 31
0.009 34
F[ ® F/ -
0.009 34
| 0.0168
[ 0.0526  0.000736
0, - . Ry =0.0257,
1 0.000 736 0.111
[0.001 39
M, = . 7 =0.000318
0.00596

Ci=[1 0 ,vf=1[0.1 0 0 0],

W;=0.1, i=0,1,2,...,N—1

Observe that the outcome of the EDOCP is identical
with that presented by Tiedemann and De Koning
(1984). From (2d), and (2¢) observe that the elements
of V34 in example | are obtained after rearrangement of
the elements of V2. Similarly the elements of T; @ &;
are obtained after rearrangement of the elements of
®; @ I';. Therefore in the following examples only one
of the two will be specified.

Example 2: This example is the same as example 1,
with the following exceptions. All the matrices in
example 1, except for X,, V* and C, V<€, W,
i=0,1,2,...,N — 1, are pre-multiplied by cos (10n¢).
Furthermore VA4, V48 184 and V2% are zero matrices,
that is the digital control problem is time varying and
the system has deterministic parameters. O
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The matrices of the EDOCP of example 2, for i = 0,
are given by

~ (1.032 0.0167 B 0.0329
¢0 = ’ FO = )
0 1.066 0.0657
(1.066 0.0172 0.0172 0.000279
0 1.100 0 0.178
(po & (p() -
0 0 1.166 0.178
0 0 0 1.136
[0.0339  0.000 549
0.679  0.00110
4)0 ® FO =
0 0.0350
L 0 0.0701
[0.001 08
0.002 16
FO ® FO — 3
0.002 16
1 0.004 32
[ 0.0329  0.000267
0, = . Ry =0.0160,
10.000267  0.0679
[0.000 529
M,y = . 7 = 0.000 126
| 0.00217
Co=1[1 0, ¥§=[01 0 0 0
WO = 0].

Since the system is deterministic the EDOCP may also
be computed using the algorithm described by Van
Willigenburg (1992). Taking identical values S;, that is
the same step size Az for the numerical integration, and
realizing that for systems with deterministic parameters,

2,00, =009,
&R =0,0T,,
Iier=I;oT,

the outcomes of both algorithms are identical.

Example 3: This example is the same as example 2,
except that V44 p48  pB4 and VB are not zero
matrices, but equal to those specified in example 1,
when pre-multiplied by 100 cos (10m¢) O

Note that example 3 concerns a digital time-varying
control problem where the system has white stochastic
parameters with time-varying first and second moments.
The matrices of the EDOCP of example 3, for i = 0, are
given by

) r1.032 0.0167 . 0.0329
(DO = 5 I'y= )
.l 0 1.066 0.0657
[1.210 0.188 0.188 0.2527
0 1419 0 0445
(1)0 ® ¢0 - )
0 0 1419 0.445
L0 0 0  1.890
[0.0200 0.2357
0.310 0.324
(po ® r() = )
0 0.440
|0 0.641 |
[0.2207
0.309
y®ly= s
0.309
10.437 |
[ 0.0351  0.00274
Qo= , Ry, =0.0310,
10.00274  0.0923
10.00295
MO = 3 N = 0.000 147
| 0.0212
Co=1[1 0], V§“=1[01 0 0 0],
WO = 01

Since the digital control problem is time varying, even
if the sampling intervals T, =1¢.,—1¢, i=0,1,2,
..., N — 1 are constant, as in examples 1-3, the matrices
of the EDOCP will be time varying and therefore need
to be computed for each sampling interval. Having com-
puted the EDOCP, straightforward application of the
algorithms, recently presented by Van Willigenburg
and De Koning (1999), enables the computation of full
and reduced-order controllers that solve the EDOCP.
Owing to the integral criterion (5), these digital optimal
controllers explicitly take into account the intersample
behaviour of the system (1).
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6. Conclusions

The results of this paper enable the computation of
finite-horizon digital optimal full and reduced-order
controllers for continuous-time systems with white
stochastic parameters, having time-varying statistics. In
addition the systems may be corrupted by additive white
noise. The sampling instants are a priori fixed but the
sampling interval may change over time. The observa-
tions at the sampling instants must be linear and cor-
rupted by multiplicative and/or additive discrete-time
white noise. The digital optimal controllers are obtained
after transformation of the digital optimal control prob-
lem into an equivalent discrete-time optimal control
problem. This transformation and its numerical compu-
tation were the subject of this paper. Full and reduced-
order controllers that solve the EDOCP are obtained
after straightforward application of the results and
algorithms presented by Van Willigenburg and De
Koning (1999). Owing to the integral criterion of the
original digital optimal control problem, the resulting
digital full and reduced-order optimal controllers expli-
citly take into account the intersample behaviour of the
controlled system. The principal application is the
design and computation of robust digital compensators
for nonlinear continuous-time systems that have to
track (optimal) trajectories.

The transformation into an EDOCP is not affected by
the equations which describe the observations at the
sampling instants. Therefore, if we restrict our attention
to the transformation only, the observations at the sam-
pling instants may also be nonlinear and corrupted by
discrete-time white noise.
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