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The digital optimal regulator and tracker for stochastic
time-varying systems

L. G. VAN WILLIGENBURGt and W. L. DE KONING}

The general approach to solve digital control problems is to approximate them by
discrete-time control problems, which consider the system behaviour at the sampling
instants only, completely disregarding the inter-sample behaviour. In this paper we
consider digital control problems without making any approximations, i.e. we solve
problems involving continuous-time criteria taking explicitly into account the inter-
sample behaviour, which relaxes the demand for a ‘small’ sampling time. We
solve what we call the digital optimal regulator and tracking problem where the
continuous-time system is linear time-varying, and disturbed by additive white
noise, and the state information at the sampling instants incomplete, and corrupted
by additive white noise. The control is piecewise constant, and the continuous-time
criteria are quadratic. Both the regulator and tracking problem turn out to be
certainty equivalent. The solutions to both the regulator and tracking problem
therefore consist of the well-known discrete-time Kalman one step ahead predictor,
and a feedback generated by a Riccati type recursion that runs backward in time.
In the case of the tracking problem the feedforward is also generated by a recursion
that runs backward in time. Both recursions can be computed off-line. Expressions
for the minimum cost of both problems, explicit in the system, criterion and
covariance matrices, are derived. In a companion paper we treat the numerical
computation which is not straightforward.

1. Introduction

Tn many practical situations we are faced with a continuous-time plant, controlled
by a digital computer. It is common practice to approximate the associated digital
control problems by discrete-time control problems which only consider the system
behaviour at the sampling instants (Ackermann 1985). In these cases the inter-sample
behaviour is completely disregarded. Therefore the sampling time has to be chosen
‘small’ to prevent undesirable inter-sample behaviour. For instance in the case of
robot control, where the computational burden on the computer is high, this presents
a serious limitation. Furthermore a discrete-time criterion has to be searched for,
which leads to a satisfactory continuous-time behaviour. Both the choice of this
criterion and the choice of the sampling time are often reported to be a problem
(Franklin and Powell 1980, Astrom and Wittenmark 1984). In this paper the digital
control problems are solved without making any approximations since we consider
continuous-time criteria taking explicitly into account the inter-sample behaviour
which relaxes the demand for a ‘small’ sampling time. Furthermore the choice of a
continuous-time criterion is a natural choice for a continuous-time system.

The digital optimal regulator for time-varying systems has already been con-
sidered by Halyo and Caglayan (1976). They however did not derive an expression for
the minimum cost of the problem; neither did they specify a numerical solution. The
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numerical solution is not straightforward since it involves the computation of inte-
grals involving the state-transition matrix of time-varying systems. The computation
of these matrices has only been considered for time-invariant systems (Van Loan
1978). De Koning (19804,b) considered the digital optimal regulator for time-
invariant systems and derived an expression for the minimum cost of the problem,
explicit in the system, criterion and covariance matrices.

The digital optimal tracker for stochastic linear systems has never been considered
in the literature before. This is remarkable since it can be applied in all situations
where a continuous-time system, controlled by a digital computer, has to track a
reference state trajectory, e.g. a cartesian robot performing a prescribed motion.

We will present both the digital optimal regulator and tracker for linear time-
varying stochastic systems including expressions for the minimum cost, explicit in the
system, criterion and covariance matrices. In a companion paper (Van Willigenburg
1991) we treat the numerical computation. It is believed that the digital optimal
regulator for linear time-varying stochastic systems permits for the first time the
computation of a digital optimal compensator, based on the linearized dynamics
about the trajectory, for nonlinear systems that have to track reference state trajec-
tories. Important applications are e.g. a robot performing a prescribed motion or a
batch fermentation process, where in both cases the linearized dynamics about the
trajectory constitute a time-varying linear system.

2. Problem formulations
Consider the stochastic continuous time-varying system

X(1) = A@x(1) + BOu(r) + v() (1a)

where A(¢) and B(r) are the system matrices and {v(s)} a white noise process with
possibly time-varying intensity, with

E{v(t)} = 0 cov(v(n),v(s)) = V() — ) (1b)
and

E{x(0)} = Xx(0) cov(x(0),x(0) = G G =0 (l¢)
The system is controlled by a digital computer, so measurements are taken at the
sampling instants, i.e.

() = Cl)x(t) + w(t,) k=0,1,2,3,... (1d)

where 17,, k = 0,1,2,... are the, not necessarily equidistant, sampling instants and
{w(t,)} a discrete-time white noise process independent of {v(1)}, with

E{w(t,)} = 0 cov(w(t),w(t)) = W()o(y — 1) (Te)
The control is piecewise constant i.e.
u(t) = u(ty) telt.ty) k=0123,... (1f)

The information available to compute the control u, consists of the measurements and
the controls up to #, _,,i.e., {y(t,),i = 0,1,2,...,k — 1} and {u(z,), i = 0,1,2,...,
k — 1}. In that case the time available for the computer to compute u(#;) equals
t, — t,_,. We may also assume the information to be { y(¢,), i = 0,1,2,..., k} and
{u(t,), i = 0,1,2,...,k — 1} in case the computation time is negligible compared to
t, — t,_,. All the results of this paper are still valid in that case.
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The digital optimal regularor problem for the system (1) is to minimize

J = E(jfxT(t)Q(t)x(t) + W (ORDu(r)dt + xT(t,)Hx(z,)) Q)

0

where E denotes the expectation operator, and Q(¢f) > 0, H > 0 and R(t) > 0. We
will pay special attention to situations where R(7) > 0. Furthermore

=ty 3)
where N is a positive integer.

The digital optimal tracking problem takes the following form. Given the system
(1) and a reference trajectory

x( <1<y C))

minimize
J = E < J/(x(t) — x,())'Q(x(1) — x,(1)) + u" (HR(Du(r)dt

+ (x(ty) — x,(t) Hx(t)) — x,(tf))> )

where furthermore (3) holds, and again Q(f) > 0, H > 0 and R(¢) > 0. As in the
regulator case we will pay special attention to situations where R(¢) = 0.

3. The equivalent discrete-time regulator and tracking problem

To solve the digital optimal regulator and tracking problem presented in the
previous chapter, we first transform them into so-called equivalent discrete-time
problems (Levis et al. 1971, Halyo and Caglayan 1976, De Koning 19804, Van
Willigenburg 1991), with unconstrained control. The derivation of the equivalent
discrete-time regulator problem for stochastic continuous-time linear time-varying
systems resembles the derivation in case of time-invariant systems, given by
De Koning (19804). Equation (1) is defined in terms of the stochastic integral
equation

!

’ B(s)u(s)ds + Jl dp(s) (6a)

fo

A(s)x(s)ds + J

‘o

x(1) = x(1) +J

Ky
where f(7) is a zero-mean process with independent increments and
E{B()} = 0 cov(dp(n, dB() = V()dr (65)
The solution of system (1) is given by
x(1) = O )x(t) + Lt )u(t) + v(tt) telt, ), k=012, .N—1
(N
where @ is the state transition matrix of system (1),
I't,t,) = J D(z, 5)B(s)ds (8)
i
and

ot t) = j (1, 5) dB(s) ®

k
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From (9) and (6 b) it follows that
E{v(t,1,)} = 0 (10a)
and

Efot, t)0" (1, 1)) = ﬂ (1, HE{dB() dBT ()" (1, 1)

i

= Jw O, V(D (1, )di = V(1) (105)
1
For ¢t = t,,, we have
Xer = Ox + Ly + v, (11a)
and furthermore
e = Gxi + w, (11b)
where
X = x(4) (11¢)
e = ¥) (11d)
w, = u(t) (11e)
O = O(tes1. 1) (11f)
e = Tt 1) (11g)
C. = C) (11h)
Ve = V(teyrs ) (114)
we = w(ty) (11)

The system (11) is called the equivalent descrete-time system since the behaviour of
this system is exactly the same as that of system (1) at the sampling instants, for
k=012,...,N — 1

The stochastic regulator criterion (2) may be written as

N—1

J = E( 2 Jk“ xT(DHOMx(t) + u"(HOR(Ou()dt + xLHxN> (12)

k=0

which, given (7), equals

J = E<Nil J‘ . X @ (1, 1)O(NO(1, 1,)x, + 2x; O (1, 1,) QT2 1y )y
k=0 Jy
+ uf (R + T (6, )OO, t ), + 0" (2, 1,)Q()v(t, 1)
+ 2xF DT (1, 1,)Q()(t, 1) + 2ur L7 (1, 1,)Q(1)0" (1, tk)dl> (13)

Introducing

O«

I

f ! OT(1,1)Q(OD(1, 1) dt (14a)

M,

i

J " (1, 1)0OT (1, 1,)dt (14 b)
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e+
R, = f [R() + T (1, t)QOT (1, )] dt (14¢)
k
and splitting up the integral results in

N—=-1
J = E< Y xiOQexi + 2xi My, + up Reuy

k=0

Yt
+ f 2xF BT (1, 1,)Q(D)v(t, t,) dt
7%
Yt
+ J 2ul T (e, t)o(e, ) dt
Tk

+ j " (1, 1,)Q(D)v(t, tk)dt) (15)

The state x, depends only on the increments df(¢), ¢ € [¢,, t,] and on wy, w;, ..., w,_,,
while v(z,¢,), t = t, depends only on the increments df(¢), t > 1,, so x, and v(¢, t;),
t > t, are independent. Because u, depends only on y,,y,,y,,...,Vc_;, thus on
XgsUps Uy e vy Vg1 Wo, Wy, ..., W, and since {z;} is independent of {w,}, u, is also
independent of v(z,¢,), t > t,. Therefore

T+ 1

E<J~ k41 2xZ(DI(1, Ik)Q(t)’U(L tk)dt> = f ZE{XZ}(DZ(I, tk)Q(t)E{'U(t, tk)} dt = 0
(16)

and

E<J~ k+1 zuz]"Z(t,tk)Q(t)‘v(tatk)dt> = J"‘*' ZE{HI}FI(I’ tk)Q(t)E{‘U(t, tk)}dt =0

k

(17)
Furthermore,
E<f e 1) QT tk)dt) B J e (B 1) (1 1)) QU] dr
_ j e v, 1) 0] dr
= YWlhrs k) = W (13)

Now we are in a position, after having stated the equivalent discrete-time system (11),
to state the equivalent discrete-time criterion for the regulator problem.

N-1 N-1
J = E( Z (xZQkxk + 2XZMkuk + u:Rkuk) + XLHXN> + Z e (19
k=0 k=0

where Q,, M, and R, are given by (14). If Q(¢) > 0, and R(¢) > 0, as assumed in §2,
by inspection of (14) it can be seen that Q, > 0, and R, > 0. However by inspection
of (14 ¢) it can be seen that if R(f) > 0 and I'"(¢, £,)Q(OI(¢, t,) + R(?) is positive
definite over some open time interval within [7,, ¢, ,) then also R, > 0. In the sequel



2314 L. G. Van Willigenburg and W. L. De Koning

of the paper we will assume R, > 0. Finally we have
k41
Ve = f tr [V, 1) Q(n)] dt (20)
%

So the original digital optimal regulator problem is equivalent to the discrete-time
regulator problem given by (11) and (19), where the equivalent discrete-time criterion
matrices are given by (14) and (20). Note that the part involving y, in (19) is
deterministic and independent of the control, so the problem of minimizing J, with
respect to the control, is equivalent to minimizing

N1
J = E< Y <xZQkxk + 2x; Myu, + u{Rkuk> + x;H.xN> 20

k=0
In deriving the solution of the digital optimal regulator problem we will consider the
minimization of (21).
The procedure to derive the equivalent discrete-time tracking problem proceeds
along exactly the same lines. Substituting the solution (7) of system (1) into the
tracking criterion (5) results in
N=1 (sl

J = E( > f X ®T(1, )OO, 1) + 2x (1, 1)QOT (L, 1)y
k=0 Ji1
+ we (R + T, t)QOT (2, t)u )y, + o' (2, 1)Q()(2, 1)
+ 2. @71, 1)Q(Ov(t, 1) + 2w T (2, )OO (1, 1)

— 2, (0Q((1, 1)x, — 2x, (DQOT(t, t)ue — 2x;(HQW(t, 1)
—— + %/ (DQ(V)x,(0) dt} + xyHxy — 2x/ (tf)HxN)+ x; () Hx, (1)) (22)

Comparing the tracking criterion (22) to the regulator criterion (13) we see that,
except for terms involving the reference trajectory x,, they are exactly the same. Since
the reference trajectory x,(f), 0 < ¢ < t,is deterministic,

E( f T (00, 1) dt) - JM 2T (OWEL(, 1)) df = 0 23)
Introducing again R,, M, and Q, given by (14) and also
L = f (OO, 1,)dr (24a)
T, = j S OQWT(, 1) dr (24b)
X, = j X100, (1) dr 240)

and given (16), (17), (18) and (23) the equivalent discrete-time tracking criterior J
becomes
N-1

J = E( N (xi Quxi + 2xg Muy, + ui Rew, — 2L x, — 2T,u,) + xyHxy
=0

N—1

— 2x,T(tf)HxN> + x; (t)Hx, (1) + kzo X, + (25)
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The equivalent discrete-time tracking problem is determined by the equivalent
discrete-time system (11) and the equivalent discrete-time criterion (25), where the
equivalent discrete-time criterion matrices are given by (14), (20) and (24). Note that
the part outside the brackets of the expectation operator in (25) is deterministic and
independent of the control. So the minimization of (25), with respect to the control,
is equivalent to the minimization of

N—-1
J = E( Y (i Quxi + 2xg Myuy + g Ry, — 2L, x, — 2Tkuk)
P

+ xyHxy — 2x](t;)Hxy (26)

In deriving the solution of the digital optimal tracking problem we will consider the
minimization of (26).

4. Solution to the equivalent discrete-time regulator problem

The derivation of the solution of the equivalent discrete-time regulator problem
resembles the one presented by De Koning (1980 ). He considered randomly sampled
linear time-invariant systems. The case of linear time-varying systems and deterministic
sampling resembles this situation where the random system matrices now become

deterministic.
The conditional mean X, and the covariance P, of the state x, are defined as
X = E{xYy, Uk—]} (27)
where
Yeor = (Voo Yubas- s Vi) (28a)
Uy = {up, g, tty, U1} (28 a)
and
P, = E{X3f} (29 a)
where
X = X — X (29b)

It is well known that %, is the best linear estimator of x, on the basis of Y,_,, U,_,,
in the sense that P, is minimal. It is well known that for the equivalent discrete-time
system (11) the estimator is generated by the discrete-time Kalman one steps ahead
predictor. In deriving the digital optimal regulator we will need the following facts.
If Z is an arbitrary matrix and x, a stochastic vector then

E{xzzxklyk—lsuk—l} = E{,QIZ)?,(} + E{izz-ik'Yk—l’ Uk—l}

= XZ% + tr (ZF) (30)
where the conditional covariance Py is given by
—_ Pi = E(R|Y. .\, U} @1
Furthermore if x, y and z are arbitrary stochastic variables then
a(y) = o(x) = E{zlx} = E{E{z| y}Ix} (32a)

where o(x) denotes the o algebra generated by x. Furthermore if f(x, y, z) is an
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arbitrary function of x, y and z then

E{E{f(x,y, 2)lx, y}} = E{flx,y, 2)} (325)
Finally since v, is independent of x,, k > i and {v,} is independent of {w,}
E{((Dkxk + rkuk)Tvlek—la Uk~l} =0 (33a)
E{lovf|Y ., Uy} = W (33b)
Considering (21) we define the scalar function

Gy, Uy
N—1
= min E{Z (Xk Qexe + 2Xi Moy, + w{ Rew) + xyHxylY, ,, Ui—l}
i k=i
(34)
Under suitable existence conditions for the expectations and the minima (Meier et al.
1971) C in (34) satisfies the Bellman equation
C(Y_,, U_;) = min E{xiTQixi + 2x/ Mu; + u] Ru, + Co (Y, UNY,_y, []i—l}
(35)

with for i = N the initial condition
Cy(Yy_y, Uy_y) = min E{x—ll\-/HxN|YN—lv UN—I} = E{X;HXN|YN—I" UN—I}
uN

= XVHXy + tr (HPY) (36)
Now suppose that C,(Y;_,, U,_,) has the form

C(Y_,,U_) = E{X;FSIxi')/i-—l’ Ui—l} + o

= & S% + tr (SP) + o (37

where §; > 0 and deterministic, and S; and «, are not functions of U,_,. Considering
the boundary condition (36), this is true for i = N if

Sy = H (38a)
ay = 0 (38 b)

Suppose it is true for i + 1, i arbitrary, then we must prove that it is true for i. From
the Bellman equation (35) we may write

G(Y, 1, U_))
= min E{x/ Q,x; + 2x/ M, + w/ Ru, + E{x, 8, x,,|Y, U} + oY, U}
Since 6(Y;, U;) = a(Y,_,, U._,), and given (32 a), this becomes
CG(Y,, U.y)
= min E{xr‘TQixi + 2x M, + ul R, + xiT+ISi+lxi+l + a4 Yy, Uy}

Using (33) and the assumption that S, and «,,, are not functions of U, this may be
written as

CY_,,U_) = min E{x:T(Q: + q);'rSi+1q)i)xi + u;r(Ri + riTShLl [y

+ 2x] (M, + (I);'rSi+ll—})ul|K—l’ []i—l} + tr (V;S;,0) + E{“iﬂ“’i-la (]i—l}
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From (30) this becomes

C(Y,_1, U_y)) = min [£(Q, + O] S, ®)%; + w/ (R, + ITS,, 1 iT)y,

—_— + 28T (M, + O S, \Tu] + tr (Q; + @S @)F)

+ tr (V.S;50) + E{ai+||),i—l’ Ui—l} (39)

The term between the brackets in equation (39) is a quadratic form in X; and »;. We
want to find the u; that minimizes (39) so the obvious way to complete the square for
the term in between the brackets of (39) is

C(Y_,,U_) = min [ + Kifi)T(Ri + F?&HE) w; + Kix)

+ X0 + 075, @ — K[(R + TS, T[)K)%)]
+tr (@ + O] Siy P)P) + tr (ViSiy)
+ E{e;| Y0, Uy} (40)
where
K = (R + 7S, 0) IV S, @ + M) @an
The minimum is attained when
u, = —Kx (42)

If Pfin (37) is not a function of U,_,, which is true for the discrete-time Kalman one
step ahead predictor for the equivalent discrete time system (11), then C,(Y;_,, U,_,)
has indeed the form assumed in (37) with

S, = Qi + (piTSin)i - K;‘F(Ri + r‘iTSi+lri)Ki (43)

o = tr (KI(R, + I'S O TOKF) + tr (VSi) + Ela, 1Y), Uy} (44)

where S; > 0 and deterministic, and S; and «; not functions of U,_,. The fact that

S; = 0 can be seen by writing (43) in the following form (Van Willigenburg 1991).
S, = (¥, — T,K)'S,,(®, — TK) + (K, — R7'MT)'R(K; — R7'M]")

+ Qi — MR 'M] (45)

From (45) it can be seen that since R, > 0, Sy > 0,and Q;, — M,R;'M > 0 (Van

Willigenburg 1991), indeed S; = 0. The solution of the digital optimal regulator

problem is therefore given by (38), (41), . . ., (44). Given (35), and considering (21),
the minimum value of the cost (19) equals

N-1

) J = E{C)} = E{xISyx} + E{a} + Eo 1 (46)
Given (37), (38), (43), (44) and (1 ¢) and using (32 b) this becomes
N—-1
— J = XS, % + tr (S,G) + izo tr (VgSgi1)

N-1 . T N-1
+ tr (K; (R, + I, S, . THK.PS) + 47
= ;Eo(( +.))Eovt (47)

The first term on the right-hand side of (47) can be compared to the cost in the
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deterministic case (Van Willigenburg 1991). The second term on the right is due to
uncertainty in the initial state, the third term is caused by disturbances acting on the
system, and the fourth by uncertainty in the state estimation. The fifth term on the
right, which showed up in deriving the equivalent discrete-time regulator problem, is
also caused by disturbances acting on the system.

Summarizing the solution to the equivalent discrete-time regulator problem is
given by

K, = (R + TIS D) (TS @, + M) (484a)
S = O+ OSSO — Ki(R, + TS, TVK, Sy= H (48b)
uy = —K.x (48¢)

N—1
J = X Sp¥ + tr (S,G) + z [tr (Vi Sii1)
k=0

+ tr (K{(Ry + IS TOKPE) + 7 484d)

where X, is generated by the discrete-time Kalman one step ahead predictor, for the
equivalent discrete-time system (11). Replacing Y;_, by Y; only affects the state
estimator, which is now generated by the Kalman filter instead of the one step ahead
predictor. Finally we remark that clearly, the digital optimal regulator is certainty
equivalent.

5. Solution to the equivalent discrete-time tracking problem
Consider the discrete-time tracking criterion (26).

N—1
J = E< Y (x4 Quxi + 2xF My, + up R — 2L, x, — 2T,uy)
k=0

+ xyHxy — ZxT(tf)HxN) 49)

Like in the regulator case we define the scalar function

N—1
G(Y_,,U_) = min E{ (ck Qexi + 2xi Myw, + w Ryu, — 2L, x,
Uy N—1

..... u k=0
— 2Taw) + xyHxy — 2x] (1) Hxy|Y, [Ji—l} (50)

Again under suitable existence conditions for the expectations and the minima (50)
satisfies the Bellman equation

C(Y_,, U_)) = min E{x:'TQixi + 2x] Mu; + ul Ry,

— 2L;x; — 2Tu; + G (Y, U)IY._y, lJiAl} (51)
with for i = N the initial condition

Cy(Yy_1Uyy) = n:,lvn E{xyHxy — zx;r(tf)HxN|YN~la Uy 1}

E{xiTvHxN - zx;r(tf)HxNIYN—l’ Un—l}
= X H%y, — 2x,T(tf)H)?N + tr (HPy) (52)

Now suppose, according to the case of the discrete-time tracker presented by Lewis
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(1986), that C,(Y,_,, U,_,) has the form
C(Y_,U.) = E{xfTSixf — 2 WY, lji—l} + o
= X[SX — 25 W, + nn (SP) + o (53)

where S; > 0, S; and W, deterministic, and S;, W; and «; are not functions of U,_,.
Given the boundary condition (52) this is true for i = N if

Sy = H (54a)
Wy = Hx,\(t) (54b)
ay = 0 (54¢)

Suppose it is true for i + 1, i arbitrary, then we must prove that it is true for i. From
the Bellman equation (51) we have

C(Y,_,,U;_) = min E{-x;'rQixi + 2x! Mu; + ul Ru, — 2L,x; — 2Ty

+ E{x] Sy xip — 25 Wi 1Y, U + a1 Yy, Uy}
Since a(Y;, U)) > o(Y,_,, U._,), and given (32 a), this becomes
C(Y._,,U_)) = min E{xQ:x; + 2x]Mu; + u] Ru, — 2Lx,

— 2Tu; + x;'r+lSi+lxi+l - 2xiT+| Wi + ol Yy, Ui-l}

Using (33) and the assumption that S, ,, W, and «,, , are not functions of U, this may
be written as

C(Y_,, U_;) = min E{x:T(Q, + (DITSIH(DI)X; + u:'r(Ri + riTSiHri)ui

+ 2x] (M, + ®F S, Tu; — xI 2® W,,, + 2L[)
— u QUMW + 2THIY,y, Uy} + tr (VSip)
+ E{a; 1Yy, Uy}

From (30) this becomes

C(Y ), U = min [§(Q + @S, ®)% + u (R + 7S T,

+ 281 (M, + ©] S, \ T)u, — 257 (®] W, + L)
= 2u] (I' W, + T + tr ((Q; + O] S, D)P)
+ tr (V;S;,1) + E{o;,1Y, U} (55)

The term between the brackets of equation (55) is a quadratic expression in X; and ;.
Since we want to find the » that minimizes (55) the obvious way to complete the
square for the term in between the brackets of (55) leads to

C(Y_,, U_)) = min[(x; + KX, — Ku! Wi — KTH"(R, + riTSlei)
(w; + K%, — Kil Wi — K?T;'T) + ’e:T(Qx + (DiTSin)i
— K/(R, + [7S, \T)K)%, — 251 (@ W, + L — KT W,
- KI'T!) — 2WL,K'T] — WLK'TT W, — TKT]]
+ tr ((Q; + (DiTSi+l(pi)1)iC) + tr (ViSiy1)
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+ E{o; Yy, Uy} (56)
where
K, = (R + 'S, I 'IFS, @ + M) (57a)
Ki = (R + TI/S,I)"'TT (57b)
K = R+ T's,I)"! (57¢)
The minimum is attained when
u, = —Kx + KW, + KT, (58)

If Pf in (37) is not a function of U,_, which is true for the discrete-time Kalman one
step ahead predictor for the equivalent discrete-time system (11), then C(Y,_,, U_,)
has indeed the form assumed in (53) with

S, = Qi+ @S0 — K/(R + ETSi+|E)Ki (59a)
W, = (@ - LK)'W,, - KT + L] (59b)
o = —(KW,)'QT" + TTW,,) - TKT'
+ tr (KR, + TS, TOK.PY) + tr (V;Siy)) + E{oy 1Y\, U_,}
(589¢)

where S; > 0, S; and W, deterministic, and S;, W, and «; are not functions of U,_,. The
fact that S; > 0 is obvious from the regulator case since the equations that determine
the feedback, (57 a) and (59a), are exactly the same as in the regulator case. The
solution to the digital optimal tracking problem is therefore determined by (57), (58)
and (59). Given (53), and considering (26), the cost (25) is given by

.——-—9 J

E{C,} + er(l/) Hx,(t) + Nil x£+ Vi

—

N—-1
E{xg Soxy — 2x3 Wo} + E{o} + x7 (1) Hx,(t) + Y. X‘+ Vi
i=0
(60)
which given (54), (59) and (1 ¢), using (32 b), becomes
N-1
—>  J = 8% - 25 W + x](DHx,(1) + Y e— (KIW,)TQT] + TT W)
i=0

N-1

- TKT] + tr (5G) + Y tr (V.S,y,)
i=0

N-1

— + Xt (KYRE + TESETORLRD) + ZO 7, (61)

The first four terms of equation (61) can be compared to the cost in the deterministic
case. The remaining terms also appeared in the regulator case and were classified

there.
Summarizing the solution (54), (57), ..., (61) to the equivalent discrete-time
tracking problem is given by
Ko = (Re + T{S D) TV S @ + M) (62a)
K, = (R + 7S T) "I} (626)
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K = (R + !SI (62¢)
w = —K% + KW, + KT, (62d)
S, = Qp + OIS, @, — K (R, + ITS,, . TOK, (62¢€)
Sy = H (621)
W, = (O, - LK) W, — KiT] + L (62g)
Wy = Hx,(t) (62 h)

J = F 8% — 253 Wy + xI(1t)Hx, (1) + tr (S,G)
N—-1

+ kzo [tr (Ki (Re + T Se TOKFE) + tr (VSiy))

+ X+ v — (KW, )'QT! + T Wey) — TK T
(621)

where X, is again generated by the well-known discrete-time Kalman one step ahead
predictor for the discrete-time system (11). The solution matches the one in the
deterministic case (Van Willigenburg 1991). If Y,_, is replaced by Y, then, as in the
regulator case, X; is generated by the Kalman filter. Clearly also the digital optimal
tracker (62) is certainty equivalent.

6. Conclusions

In this paper we considered ‘true’ digital control problems, i.e. problems involving
continuous-time criteria, which explicitly take into account the inter-sample
behaviour, which relaxes the demand for a ‘small’ sampling time. Using stochastic
dynamic programming, we have derived the digital optimal regulator and tracker for
linear time-varying systems disturbed by additive white noise, where the state inform-
ation at the sampling instants is incomplete and corrupted by additive white noise.
Both problems appear to be certainty equivalent so the result equals the deterministic
digital optimal regulator and tracker (Van Willigenburg 1991) where the state is
replaced by its estimate generated by the discrete-time Kalman one step ahead
predictor. The derivations in this paper were fundamentally different from the ones
presented in the deterministic case. Expressions for the cost of both the digital optimal
regulator and tracker have been derived, which are explicit in the system, criterion,
and covariance matrices. In the deterministic case only an expression for the regulator
cost was presented.

The numerical computation of the digital optimal regulator, which until now has
only been considered for time-invariant systems, together with the numerical com-
putation of the digital optimal tracker are treated in a companion paper (Van
Willigenburg 1991). It is believed that the digital optimal regulator result permits for
the first time the computation of a digital optimal compensator for nonlinear systems
that have to track reference trajectories, e.g. a robot performing a prescribed motion
or a fermentation batch process. The linearized dynamics about the trajectory in these
cases constitute a time-varying system.

The digital optimal tracker for stochastic linear systems has never been considered
in the literature before. This is remarkable since it can be applied in all situations
where a linear continuous-time system, controlled by a digital computer, has to track
a reference trajectory, e.g. a cartesian type robot performing a prescribed motion.
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