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Abstract

For an industrial X-Y robot, in which the links are subjected to
torque and velocity constraints, the time-optimal control prob-
lem is solved where the robot motion is constrained to follow
an arbitrary path. A numerical procedure to compute the solu-
tion is presented and demonstrated. The solution consists of a
continuous-time state trajectory and open-loop control. Because
the X-Y robot is controlled by a digital computer, a recently
developed numerical procedure to compute optimal tracking
digital controllers is applied to the solution to arrive at an
implementable digital time-optimal feedback controller that
accounts for modeling errors as well. Experimental results ob-
tained after implementation of the digital time-optimal feedback
controllers are presented for two paths. The robot dynamics
include both viscous and Coulomb friction. The extension of
the solution and numerical procedures to general rigid ma-
nipulators, including both viscous and Coulomb friction, is
straightforward.

1. Introduction

Manufacturing operations performed by robots (e.g.,
spraying, cutting, or welding) are specified through a
desired robot motion in space. However, there is freedom
in how this motion should be executed in timme. Because
generally one wants the robot to operate as fast as pos-
sible, the problem of executing a motion specified in
space, called a path, in minimum time is of vital practi-
cal importance. Furthermore, the solution of the problem
may be used to select paths with equal starting and end
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points, according to their minimum traveling time, in an
attempt to solve another time-optimal control problem.
This problem considers the time-optimal motion of a
robot subjected to actuation torque constraints (Ailon and
Langholtz 1985; Geering et al. 1986; Sontag and Sussman
1986; Van Willigenburg 1991)—and possibly gripper,
payload, and obstacle constraints (Shiller and Dubowsky
1989)—from a specified initial configuration to a speci-
fied final configuration (i.e., a time-optimal point to point
motion).

The time-optimal control problem, in which robot mo-
tion is constrained to follow an arbitrary path, has already
been solved by several authors (Shiller and Dubowsky
1989; Bobrow et al. 1985; Shin and McKay 1985). How-
ever, these authors consider only one type of actuator
constraint—i.e., the limits on the actuation torques of
the links—while neglecting the velocity limits of the
links, which play a major role in practice. These limits
are caused by another actuator constraint and possibly by
the mechanical constraints of the robot mechanism. A de-
tailed description of a numerical algorithm to compute
the solution and experimental results after implementa-
tion was not presented by any of the authors. Except for
Shin and McKay (1985), who consider viscous friction,
friction is not included in the robot dynamics, although
both viscous and Coulomb friction play a significant role
in practice (Craig 1986).

We present a solution to the time-optimal control prob-
lem for an industrial X-Y robot in which the motion is
constrained to follow an arbitrary path, and both the ac-
tuation torque and velocity constraints of the links are
considered. The robot dynamics include both viscous and
Coulomb friction. A numerical procedure 10 compute the
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solution will be presented along with numerical examples
involving two paths. Although not treated in this article,
the extension of the solution and the numerical proce-
dure 10 general rigid manipulators, where both Coulomb
and viscous friction may be included in the manipulator
dynamics, is straightforward.

The solution to the problem in which the robot has to
travel a prescribed path in minimum time consists of a
continuous-time state trajectory and a continuous-time
open-loop control. Because robots are controlled by com-
pulers in practice, we are unable to generate continuous-
time controls. Therefore, we apply a recently developed
numerical procedure to compute digital optimal tracking
controtlers (Van Willigenburg 1991) to arrive at an imple-
mentable digital time-optimal feedback controller that also
accounts for modeling errors.

2. Actuators and Constraints

The industrial X-Y robot that we consider is actuated
by DC motors. The dynamics of a DC motor can be
represented by
U= Ldl/dt+ RI + Kw,
T=KI,

(la)
(Ib)

where

L = the induction of the motor (H),

IR = the electrical resistance of the motor (Ohm),
I = the motor current (A),

{7 = the voltage applied to the motor (V),

w = the angular speed of the motor (rad/s),

T = torque generated by the motor (N - m/rad),

K = Voltage constant of the motor (Vs/rad).

From both a practical and a modeling viewpoint, it will
be convenient to choose the motor currents to be the
control variables of the robot. The capabilities of a DC
motor are mainly limited by the heat generation and dis-
sipation characteristics. Heat generation is represented by
the second term in (la) and so is proportional to the mo-
tor current. Conventional DC motor controllers are built
around a motor current controller, which is used to limit
the motor current to prevent overheating. If we consider
the current controller to be ideal, which is a reasonable
assumption (Van Willigenburg 1991), and send our actual
control signals to the inputs of the current controllers, we
may consider the motor currents to be the control vari-
ables. A practical advantage of this approach is that we
need only the motor current controller and not other parts
of conventional DC motor controllers.

Very often, dynamic models of robots consider forces
and/or torques applied to the robot links to be the control

variables. From (1) it can be seen that the motor current
is proportional to the torque. If we assume the transmis-
sion from the DC motor to the links to be ideal, the force
applied to each robot link is proportional to the motor
current. The assumption that the motor currents are the
control variables in this case does not affect the struc-
ture of the robot dynamics. In practice the transmission
sutfers from gear cogging, backlash, and bearing nonlin-
earities. In our case these constitute modeling errors that
will be compensated for by the digital feedback controller
designed in Section 7.

We will adopt the assumptions mentioned earlier and
consider the DC motor currents to be the control vari-
ables. One actuator constraint consists of the limitation of
the motor current to prevent overheating,

- Inlux S [ S Iulaxa (2)

where 1, represents the maximum value of the motor
current where overheating will not occur. In practice,

to control the motor current, the voltage supplied to the
DC motor is rapidly switched on and off, which may be
considered as varying the voltage supplied to the motor.
Therefore, we have

_(/mux S U S (jmum (3)

where (7.« represents the voltage of the switched bipolar
voltage supply. In our case, and in fact very often, we
may neglect the first term in equation (1). Doing so, from
(1) and (3) we observe that the largest interval to which
w may belong that still allows the motor current to reach
the complete interval given by (2) is given by,

W € [~ Wmax, Wmax | (4a)

where

- lg[lnux)/h’

We will use constraint (4), although it is conservative,
as this allows for a constant bound (2) for the motor
currents (i.e., the control variables). If the bound (4)
is considered to be a serious drawback, increasing the
value of the voltage of the switched voltage supply Upax
will increase the bound (4) without violating other DC
motor constraints. Because we assume the X-Y robot to
be rigid and the transmission to be ideal, the actuator
constraint (4) can be transformed to a constraint on the
link velocity, which in this case is proportional to w.
Thus in our case the velocity limits on the individual
links are caused by an actuator constraint. Velocity limits
on the individual links may also result from mechanical
constraints on the robot mechanism.

Wiax = (Uguax (4b)

3. Dynamic Model of the X-Y Robot

Very often friction effects ate neglected in robot dynamics
(Ailon and Langholtz 1985; Geering et al. 1986; Bobrow
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et al. 1985; Shiller and Dubowsky 1989). Experiments
with our X-Y robot have demonstrated that friction ef-
fects play a significant role in the dynamic behavior (Van
Willigenburg 1991). In our robot model, friction is rep-
resented by both viscous and Coulomb friction. Using
this together with the other assumption, we arrive at the
following robot model:

(5a)
(5h)

&y = —v,dy, — cp sign(iy) + bettg,
y): = ‘”y.‘]p - Cy Sign(.‘]p) + by“y’

where .r;, represents the translation of the x-link with
respect to a reference position, y,, represents the trans-
lation of the y-link with respect to a reference position,
v, and v, are the viscous friction coefficients, ¢, and

¢y the Coulomb friction coefficients, and b, and b, the
sensitivity coefficients to the control variables u, and 1w,
which are equal to the motor currents. Both b, and b,
depend on the mass of the link and the payload, which
we assume to be known. We rewrite the dynamics (5) in
state-space form as

£y 0 0 | 0 Tp
Yol 10 0 0 Tty
Ty 00 —-v, O Ty
ip 00 —v, O Up
0o 0 0
0 0 Uy 0
+ b, 0 [uy} - cp sign(iy) [ ©)
0 by ¢y sign(y,)

The actuator constraint (2) in terms of (5) and (6) be-
comes a constraint on the control

|'“.r| < Umax, (7a)

J1y] < tUmax. (7b)
where

Umax = Dnax- (7¢)

Given the assumption of an ideal transmission, we have
'i"p = W, (8)

where ¢, is a positive constant determined by the trans-
mission. Together with (4) we obtain the following state
constraint:
[.i.‘pl < Smaxs (9a)
where
Smax = Wmax/ct' (9b)

The same constraint holds for 9, the speed of the y-link:

|Up| < Smax- (9¢)

The actuator constraint (7) limits the force applied to each
link. This limits both the link speeds and accelerations,

as will be demonstrated in the next section. The state
constraint (9) directly limits the link speeds.
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4. The Time-Optimal Control Problem

We consider the problem where the X-Y robot described
by (6), (7), and (9) has to travel a prescribed path in
minimum time. The path prescribes the evolution of half
the number of state variables (i.e., =, and yp, the link
positions); however, it does so not as a function of time,
but as a function of a certain parameter A:

Ty = f()‘)v Yp = .‘1(/\)a 0<A< /\max' (]())

In other words the path (10) prescribes the robot motion
in space. The functions f and g are continuous func-
tions of A with continuous first-derivatives. In practice
the functions [ and g in (10) are seldom directly avail-
able. Usually the path is specified as a finite number of
coordinate pairs (,,,%,) that have to be passed in a given
order. In Section 6 we will use cubic splines to interpo-
late the @), and y,, coordinates. Thus both [ and ¢ will be
a piecewise polynomial of order 4, and therefore a piece-
wise analytic function, that possesses a continuous first
derivative (De Boor 1978).

Given the dynamics (6) and the constraints (7), (9), and
(10), the time-optimal control problem comes down to
determining

A

in (10) as a nondecreasing continuous function of time—
ie.,

0 <t < binax (11a)

ADZ0 0<t< ty, (11b)

where
MOy = 0. (1lc)
AMlmax) = Amaxs (Hd)

such that t,,, is minimal. Once (11) is known, the time-
optimal trajectory is given by (10); i.e.,

TOM)
9(A(H)

0 << fnaxs

0 <t = fae

(12a)
(12b)

I

Ty

Yp

i

Note that when A(f) = 0. all links stand still. At these
points we may split the path, and therefore the problem,
in two parts by demanding the robot to stand still at the
end of the first path, as well as at the start of the second.
According to (6) and (12), the latter is done by prescrib-
ing A = 0. Therefore, except for possibly the initial and
final time, we have A > O—i.e.,

A >0, 0 <t <ty (13)

Because A(t) in (12a) is a nondecreasing continuous func-
tion of time, minimizing ¢max is equivalent to maximizing
d)\/dt at all times ¢, 0 < t < tpyax. The solution to

the time-optimal control problem will be based on the
conversion of the constraints (7), (9), and (10) into con-
straints on d\/dt and d?)/dt? and the conversion of the
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dynamics (6) into dynamics concerning A(t). At this stage
we adopt the following notation:

fi=dfjdx,  fr =d*FJdN?,
o =dg/d\, g = d*g/dN\?,

A=d\/dt, X =d*\/di*. (14)

The quantity \ is referred to as the parh velocity, because
it determines the speed by which the path is traveled

in time. Accordingly, the quantity X is referred to as

the path acceleration. From (12) and (14) we establish
the following facts, determined by well-known rules for
differentiation:

&y = fid, (15a)
Fp = X+ L33 (15b)
Up = A, (15¢)
ip = 0A + A% (15d)

From (6) we see that a state trajectory determined by
xp(t), yp(h), ty < t < tyax, can only be realized if both
functions are continuous and have continuous first deriva-
tives. Now from (15a) and (15¢), given the properties
of f, g, and A(£), we observe that this is so. Because of
the constraints (7) and (9), not all state trajectories pos-
sessing these properties can actually be realized. We will
show that by adjusting A(t) we can always satisfy the
constraints (7), (9), and (10).

From (15) and (5) we obtain

fid+ f-_;)\z = ~v£f,/'\ -y sign(flx'\) + by,

0 <t < taxs (16a)
G+ A = —'(lyg/l)\ - ¢y sign(gy \) + by,
0 <t < b (16b)

Assuming f) and g, everywhere are nonzero, from (16)
and (13) we obtain

X=X/ fi = v = e/ | il + beur) i,

0 <t < toux, (17a)
A== N /g1 — v A~ ¢ /lgi| + byuy/an,
0 <t < tpax- (17b)

The constraint (9) using (15a) and (15¢) may be written
as, )

A< -"'mux/lfl |7

A< Slnux/l!ﬂlv

0 <1< by,
0<t< b

(18a)
(18b)

Because fi, f, g1, and g; are functions of only A,
equation (17) constitutes two differential equations in X
of which the evolution should be the same. The evolution
is uniquely determined by A(0) and A(0) and the values of
the control variables wu,.(t) and uy(t), 0 <t < tyax. Be-
cause the evolution of both differential equations should

be the same, only one of the control variables can be
chosen independently; the other (or others, for robots
with more than two links) has to be adjusted to stay on
the path.

Now we are in a position to restate the time-optimal
control problem.

4.1. Problem Formulation

The time-optimal control problem is to find the controls
wy(8), uy(t), 0 < t <ty bounded by (7) such that the
evolution of (17a) and (17b) is the same, while the path
velocity A, bounded by (18) is maximized at all times ¢,
given the boundary conditions A(tg)A(to), AMtmax), and
;\(tlllﬂx)'

We will first examine the influence of the constraint
(7) on the problem and then examine the influence of the
constraint (18). The constraint (7) restricts the admissible
values of the path acceleration (1) in 7):

a0 A) < X< B0 N, 0<t<tu, (19a)
ay (A A) < X< B0 N, 0<t <ty (19b)
where
g\ A) = —fz;\z/f, — v A — e/ Al
= boumax/| 1], (19¢)
B A) = =N fi —vh = e /I fi]
+ baettmax /| f1], (19d)
a,\A) = =X /g1 — v, A — ¢, /)]
— byumax /|01, (19¢)
By A = =2\ /g1 = v X — ¢, /|1l
+ bytmax/|01]- (191)

For each A, equation (19) restricts the admissible val-
ues of the path velocity A. For each A the admissible
values for A have to be such that

a (NN = B,\ M) <0

Aay(AA) = 300,10 <0, (20)

In general, if, for some A, the largest « exceeds the
smallest 3, A is inadmissible. Therefore (20) is equivalent
to

“max()\a )‘) - /3min(/\7 )\) < 0» (ZIJ)

where
Qmax = MAX(“Lq(YyL (21b)
Binin = MlN(lfcy/iy) (2lc)

In (21) MAX refers to the maximum operation applied
to the values within the brackets and MIN to the mini-
mum operation. In general if the robot has n links, (21) is
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equivalent to n{n — 1) inequalitics. Using (19), we may

rewrite (20) as

PeAA) <OA XN, <0, (22a)
where
Pa(A, ;\) = —a\ — bA - c—d, (22b)
Py(A, N =aN+bh+e—d, (22¢)
where
a= /fi—g:/9, (22d)
b=v, — v, (22¢)
c=c /|| = ey/lgl (221)
d = (b /1 il + by /|1 Dittmax. (22p)

For each A, equation (22) contains quadratic inequal-
ities in A that may be visualized by parabolas (Fig. 1).
Now because f) and ¢ are continuous, the robot is al-
ways capable of following a path if it is moving slow
enough. In terms of (12), this implies that each constraint
in (22) must allow values of the path velocity A within an
interval [0.¢), where ¢ is a small positive constant. With
this in mind, we can visualize the two possibilities by
which (22) may put constraints on A. From Figure | we
observe that the admissible values of A for cach \, may
consist of either a single interval or two distinct intervals.
If we draw the admissible values for A against A, two
typical situations may arise. If the admissible values of
A for each A consist of a single interval, the admissible
region will contain no “islands of inadmissibility” (Fig.
2). Otherwise, the admissible region will contain at least
one “island of inadmissibility” (Shin and McKay 1985).
The border T'(\) of the admissible region, according to
(21), is determined by

”1nax(>\s /\) - ﬂmin(/\, )\) = (. (23)

In the following, for convenience, although it is some-
times formally incorrect, we will assume the border 7'())
to belong to the admissible region. In practice (see Sec-
tion 7) we always have to choose conservative bounds for
the control variables, and so this assumption is legitimate.
Note that the (A, \) plane is often referred to as the phase
plane (Shin and McKay 1985).

In Figure 2, T'(A) constitutes the border between the
admissible and inadmissible regions caused by constraints
(7) and (10). Constraints (7) and (10) also cause the
bounds (19) on the path acceleration X We may repre-
sent these bounds in Figure 2 by introducing

= dX\/dA. (24)

The quantity p represents the slope of the path velocity
evolution as a function of A, From (24) we have

d/‘\/(lt .
= . 25
Djai =M (25)

pu=d\dx\ =
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dlambda/dt: adm. values: +, and inadm. values: o

(b) 6 e e

pNdlambdasdt), py(diambda:dt)

diambda/dt: adm. values: +, and inadm. values: o

Fig. 1. A, Admissable and inadmissable values of d\/dl
Jor a single lambda. B, Admissable and inadmissable
values of d\/dt for a single lambda.

Inadmissible reginn

Aﬂ/mil-mhd“) S(lambda)
Z R ™~
) d <l ) >

dlambduidt

lambda

Fig. 2. Problem and solution in the phase plane.

From (25) we observe that the admissible values of 1
at each point in Figure 2 are bounded by (19). At some
points in Figure 2, this is represented by arrows. The
upper arrow at each point represents jt, the slope of the
the path velocity evolution when the path acceleration,
X, is maximized. The lower arrow represents /¢ when
the path acceleration, X, is minimized. At each point of
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Figure 2 the actual slope of the path velocity evolution
should lie between these arrows. Note that on the border
T'(A) of the admissible region in Figure 2, the upper and
lower arrows cxactly overlap, as there is only one value
of X, and because of (25), only one value of g is allowed.

In terms of Figure 2, the time-optimal control problem
now comes down to maximizing the path velocity A for
each A, 0 < X < Apux, where A should stay inside the
admissible region and satisfy the boundary conditions
A0) and Mtuay), and everywhere ¢ via (25) is bounded
by (19). Shin and McKay (1985) developed an algorithm
to maximize the path velocity X in Figure 2 and thereby
svulved the time-optimal control problem if constraint (9)
is disregarded. We want to solve the problem including
constraint (9). Assuming from (18) that f, and ¢, are
nonzero, we have

A < S, (26a)

where

S()\) = MIN(Smux/lfl l7 Smux/'.‘/l |) (26b)

The constraint (26) changes the admissible region in
Figure 2 at points where S(\) < T(\). We therefore re-
define the border of the admissible region by V (), which
we again assume to be part of the admissible region. Ob-
viously,

V(A) = MIN(S(N), T'(N)). (27)

DEFINITION 1. An inadmissible point on the border V()
of the admissible region is a point that does not allow
continuation inside the admissible region of A because of
the bounds on g Accordingly, points on the border V()
that arc not inadmissible are called admissible points on
the border V(\).

In Figure 2, V(0.14) is an inadmissible point, whereas
V(0.5) is an admissible point on the border V(\).

Like Shin and McKay (1985), in the following we will
limit the discussion to situations in which no “islands of
inadmissibility” occur. However, our algorithm can be
extended in exactly the same manner as theirs to include
situations in which “islands of inadmissibility” do occur.

5. Solution to the Time-Optimal Control
Problem

The solution of the problem is based on the following
rule. When traveling forward in the A domain, to maxi-
mize A we should maximize t, given by (25). From (19)
and (25), observe that g is maximized by maximizing the
path acceleration,

A= ﬁmin(/\, )‘) (28)
Therefore the curve so constructed is called an accelera-
tion curve.

DEFINITION 2. An acceleration curve is a curve started
anywhere in the admissible region that travels forward in
the A domain while g is maximized, except when on the
border V(A). On the border V(\), p is chosen to stay on
the border [V ()A), 0.25 < A < 0.5 in Figure 2]. When this
is no longer possible, either this is an inadmissible point
on V(A), where the acceleration curve ends [V (0.14) in
Figure 2], or the acceleration curve continues inside the
admissible region where g is maximized again [V(0.5)
in Figure 2]. If the acceleration curve does not meet an
inadmissible point on V(A), it ends at the point where
A= /\mux-

Traveling backward in the A domain, to maximize A
we should minimize j.. From (19) and (26), observe that
this is achieved by minimizing the path acceleration,

5\ = (Ymux(/\y /\) (29*)
Accordingly, the curve so constructed is called a deceler-
ation curve.

DEFINITION 3. A deceleration curve is a curve started
anywhere inside the admissible region that travels back-
ward in the A domain while z is minimized. It ends at

either the first admissible point on V(\) it meets or at a
point for which A = ().

Note that these definitions imply the following. Either
two deceleration curves have no points in common or one
includes the other. Furthermore, an acceleration curve and
a deceleration curve have at most one point in common.
Finally, note that traveling forward and backward in the
A domain, according to (13), is equivalent to traveling
forward and backward in time.

DEFINITION 4. A point p\,,)\,) in the (A, N plane pre-
cedes another point (Ay, Ay) if A} < X (Note the equal-
ity.)

DEFINITION 5. An acceleration or deceleration curve
precedes another acceleration or deceleration curve if
the end point of the former precedes the end point of
the latter (note that the end point of a deceleration curve
precedes its starting point).

After application of the following algorithm, which
consists of three steps, we obtain the solution to the time-
optimal control problem.

Algorithm

1. From the initial values A = 0 and A = 0, start an
acceleration curve. If the acceleration curve ends on

* Equation 31 follows.
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V(A). call this point V(A,). By Definition 2, V(A,)
is an inadmissible point on V().

2. From the final values A = Anax and A = 0, start
a deceleration curve. If the deceleration curve in-
tersects the acceleration curve generated by step 1,
this intersection is unique, and the procedure ends.
Otherwise the deceleration curve ends at V(A). Call
this point V(A.). By Definition 3, V(A.) is an ad-
missible point on V().

3. Search the border V(\) from V(A,) for the first
admissible point V(A\,) on V(A), Ay < Ay < A
From V(\p), start a deceleration curve. Given the
nature of the algorithm and Definitions 2 and 3,
this curve intersects exactly one acceleration curve
generated by the algorithm, so the computation
may be stopped once an intersection is found. From
V(\p). start an acceleration curve. If this curve ends
at an inadmissible point on V(). this point becomes
the new V(A,). and this step is repeated. Otherwise
this curve crosses the deceleration curve generated
by step 2 and the procedure ends.

THeOREM 1. The set of acceleration and deceleration
curves generated by the algorithm uniquely connects the
initial and final conditions. This connection alternately
consists of acceleration and deceleration curves and con-
stitutes the solution to the time-optimal control problem.

Proof. The procedure ends if a curve intersects the de-
celeration curve generated by step 2. This has to be an
acceleration curve that is generated by either step 1 or
step 3. If the acceleration curve generated by step | in-
tersects the deceleration curve generated by step 2, these
curves uniquely connect the initial and final conditions. If
the deceleration curve generated by step 2 is intersected
by an acceleration curve generated by step 3, this accel-
eration curve started at V(A), where it was connected to
a preceding deceleration curve that was connected to ex-
actly one preceding acceleration curve generated by either
step 1 or step 3. If this is the curve generated by step |,
again a unique connection is found; otherwise the accel-
eration curve started at V()\), where it was connected to
a preceding deceleration curve, etc. Thus we have proved
that the acceleration and deceleration curves generated by
the algorithm alternate and uniquely connect the initial
and final conditions.

Let T be the unique solution generated by the proce-
dure. Note that I" can be divided into sections consisting
of one acceleration curve connected to one decelcration
curve. All connection points should be considered part
of the deceleration curve. Furthermore, note that the ad-
missible region above each section is bounded by A = 0,
A = Amax, V(A), or I itself. If the solution generated
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by our procedure is not optimal, a curve 1" should exist
with at least one point, say (A, Ag) above I'. Now con-
sider the section of I' that contains )\y. In this section,
one point must exist where I goes up from I" and one
point where I'" comes down on T, since otherwise 17 vi-
olates the boundary conditions or leaves the admissible
region. Thus I'" goes up from and comes down on the
acceleration curve of the I' section, I goes up from and
comes down on the deceleration curve of the I" section,
or IV goes up from the acceleration curve of the I' section
and comes down on the deceleration curve of the I" sec-
tion. However, 1" going up from the acceleration curve of
the T" section violates the fact that y1 on T is everywhere
maximized; [ coming down on the deceleration curve of
the I section violates the fact that j+ on I' is everywhere
minimized, leaving no opportunities for 17, )

6. Computation of Time-Optimal Solutions
6.1. The Numerical Algorithm

We developed software to compute the time-optimal so-
lution where f and g, which constitute the path (10), are
obtained by cubic spline interpolation of a set of coordi-
nate pairs

(i i) 1=0,1,2,..., M, an
which constitute preseribed values of x,,(1;) and y,({,),
where 1; is undetermined but with the property that
ti;z1 > t;. Thus (31) constitutes a set of points in the
X-Y plane that have to be passed in a given order. The
function [ is obtained by cubic spline interpolation of the
sequence

(A, t=0,1,2,..., A, (32a)

where
x(\;) = x5, i=0,1.2,...,8M (32b)
Ao =0, (32¢)
Aipr = Ai=1U/M, i=0,1.2,...., M — 1. (32d)

Accordingly, y is obtained by cubic spline interpolation
of the sequence

YA, i=0,1,2,..., M, (33a)

where

y(\) = yi, i=0,1,2,..., M. (33b
We chose Akima’s cubic spline interpolation because it
combats wiggles in the interpolant (De Boor 1978), and
wiggles in the path are generally undesirable. We used
the routine CSAKM from the IMSL library to perform

this interpolation. Figure 3 shows the interpolation results

The International Journal of Robotics Research
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(i.e., the paths) resulting from two sets of coordinate pairs
numbered according 1o the order in which they have to be
passed.

The computation of the time-optimal solution is largely
based on the numerical integration of (28) and (29) for-
ward and backward in time. (\,,, Ay, {,,) will refer to a
point in the (A, ) plane that is reached at time ¢,,. The
numerical integration will be evaluated at equidistant
times {,; i.e.,

tupr — ty = At (34)

for acceleration curves and the search procedure, and
tn+l - ty = -At (35)

for deceleration curves where At is a positive constant.
For our application we chose

At = 1mS. (36)

By definition, the numerical computation of an accel-
eration curve starts with n = 0, and so (g, Ao, to) is the
starting point of the curve. The computational procedure
consists of seven steps:

1. From (), /'\,,,t,,), numerically integrate

(28) forward in time and evaluate the result

(An+l ) An-{»l ) tn+ 1)

If At > Aumaxs stop the acceleration curve at

(/\y%) /\lly tu)-

34 <V, setn=n+1,and goto 1.

4. i V(A,q) = TN, 41), stop the acceleration curve
at (/\IU /.\ny [n)~

5. Numerically integrate (29) from (A, A, t,,) forward
in time and evaluate the result (/\,,+|,/'\,,H,t,,+l).

6. If /'\”H > S(A, 11), stop the acceleration trajectory
at (/\ua /\717 [u)~

7. Set XIL‘FI =S4, n=n+1,and goto 1.

]

Steps | and 2 are the general steps taken. Step 3 in-
volves the usual continuation if we are within the admis-
sible region. Step 4 involves the situation in which an
inadmissible point is reached on the border V() = T(\).
Step 5 is taken if we reached a point on the border
V(A) = S(A). Step 6 involves an inadmissible point
on the border V(A) = S(\), while step 7 involves the
continuation on the border V() = S(\).

By definition, the numerical computation of a decelera-
tion curve starts with n = 0, so (\y, Ay, ty) is the starting
point of the curve. The computational procedure consists
of five steps:

1. Numerically integrate (29) from (A, A, ¢,,)

backward in time and evaluate the result

Aot 1y At tgr)-

If A+ < 0, stop the deceleration curve at

Ay Ay L)

3. 10f /'\.,l+| > V(A,), stop the deceleration curve at
(/\na /\na 17:)-

4. If A, 4y is inside the A domain of an acceleration
curve, search for the nearest computed value X
in this domain and consider the point (X', \') of
the acceleration curve. If )\nH >\, an intersec-
tion is found, and the deceleration curve ends at
(A A, L),

5.S8etn=mn-+1and goto I.

(]

Steps 1 and 2 are the general steps taken. Step 3 in-
volves the reaching of V(). Step 4 involves the situation
in which a connection (o an acceleration curve is found.

The search for a next admissible point on V()) is
performed by the following procedure consisting of eight
steps [by definition we start searching at n = 0 so at
(Ao, Ao, L), where Ay = V(A)]:

1. Numerically integrate (28) from (A,,, A, t,,) forward
in time and evaluate the result (A, 1, Apy1, tnyr).

2. If A1 > Apaxs stop the search.

300 Apt < Vg1, (A, Ay) is the next admissible
point on V().
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4. I V(Ang1) = T(Agy), g0 to step 8.

5. Numerically integrate (29) forward in time
from (\,,, A,.t,) and cvaluate the result
()‘1§+I-/\n+l~tn+l)~ .

6. If Ayt < S(Aug1), (A, Ap) is the next admissible
point on V(\).

7. Set /-\n+l = S(/\n+ 1)-

8 Setn=mn+1and go to {.

Steps 1 and 2 are the usual steps taken. Step 3 in-
volves a continuation from the border inside the admis-
sible region. Steps 5 through 8 are taken if the border
V(A) = S(A).

Because we obtain A and A through numerical intcgra-
tion of equation (28) forward and (29) backward in time,
we immediately have available A(f) and A, Via (12),
(15a), and (15c¢), we therefore have available the state tra-
jectory of the system (6). This state trajectory will be the
basis for computing a digital controller.

The routine IVPRK from the IMSL library, which uses
a Runge Kutta fifth- and sixth-order method, is used to
perform the numerical integration. However, at some in-
tervals, error conditions are obtained because equations
(28) and (29) become stiff. Then a Euler integration rou-
tine was used in which very small steps were taken to
ensure reasonable accuracy. We should mention that use
of the Euler routine seriously decreases the computational
cfficiency. From (21)—which, via (19), determines cvpax
and i in (28) and (29)—we observe that (28) and (29)
become stiff if f, or g, becomes large or if both f| and
g1 become close to zero.

In Section 5 we assumed both f| and g, were nonzero
everywhere. In practice, however, at some part of the
path (10), one of the links stands still momentarily or
for some time, and therefore f| or ¢; becomes zero at
isolated points or intervals, respectively. If f; is zero, (26)
is completely determined by |g;]. From (16a) we obtain

N = bouy/ fa. (37)

If f is zero at an isolatgd point, f is nonzero, (19b)
determines the bounds on A, (28) and (29) are well de-
fined, and from (37) we have

T\ = lbmumax/le’/z. 38)

When g, is zero, (26) is complctely determined by | fi},
and from (16b) we have
M = byuy /g (39)

If g, is zero at an isolal(?.d point, g, is nonzero, (19a)
determines the bounds on A, (28) and (29) are again well
defined, and from (39) we have

T(A) = |bytmax/92] 2. (40)

428

Because we treat the case of isolated points, one may
wonder if (38) and (40) result in a discontinuity of T(\),
because this would have serious consequences for the
numerical algorithm if T(\) < S(\). However, this is
not so.

LEMMA 1. Consider f(A\g) to be an isolated point where
J1(Ap) = 0. Then

lim T'(A) = T(A\y).
A== Ay

Proof. From (38) we have

T(N) = |by o /S22 (41)

Because f is such that f; is continuous and f()g) is
an isolated point where fi(Ag) = 0, then if A — Ay,
SN — 0. From (16a), given f,(\) — 0, we obtain,

(“b;r“mnx - fl(/\))\z - (n)/‘ll(A)l

< A

< (11;1'”m;|x - /2(/\)/\2 -+ (1)/“I(/\)|
Obviously, if A > [byttmax/ f2(N)]'/2, the upper and

lower bound both go to either 0o or —~ as fi(A) — 0.

Tugcther with (16b), this leaves no admissible values for

M A < |byttmax/ f2(0]/2, the upper bound goes to 400

and the lower bound to —oo as fi(A) — 0, with (16b)
leaving admissible values of . )

For an isolated point g(\y) where g;(A\g) = 0, we ob-
tain analogous results. Aithough T'(X) is continuous, it
may rapidly change around )¢, which may cause numeri-
cal problems.

Now consider the situation where f; = 0 over a closed
interval [Ag, A1]. Then for each A € (Ao, A)) fa(A) =
0, and (16a) imposes no bounds on A or \. Therefore,
T(A) does not exist, which can be regarded as T(\) =
oo. Therefore, V(A) = S(\), which, by inspection of
(26), is completely determined by [g;]. If X equals Ag or
A1, this equals the situation of isolated points described
previously. For g; = 0 over a closed interval, we obtain
analogous results. From this we observe that the border
V(A) at Ag and A, the edges of the interval, may jump
from 7°(A) o S(A), generally causing a discontinuity. To
obtain a proper solution, V' (A) should be defined as the
smallest value of A involved in the jump that constitutes
an admissible point on V(X). It therefore is essential to
continuously search the border for the next admissible
point on it—i.e., to start the next integration step of the
search procedure at the value of A where the previous
step ended.

Finally, if fi = 0 and g, = O simultaneously, this
amounts to a situation where the path demands all links
(i.e., the robot) to stand still, as can be seen from (15).
We have already excluded this situation in Section 3.
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Summmarizing, we do allow f; and ¢, to be zero at
intervals or isolated points, but not simultaneously. Fur-
thermore, because we want o prescribe the initial and
final state of the robot (6), from (15a) and (15¢) we
see that we do demand a path for which f1(0), ¢,(0)
Sy ), and gi{ A, are nonzero. In that case, A\0),
Alian ), and (12) uniquely determine the initial and final
state of the robot (6). The main problem with the numer-
icui computation of the algorithm is that the equations
(28) and (29) may be stifl” at some intervals. This causes
the numerical integration o become computationally ex-
pensive and less accurate. This problem can be partially
overcome by adjusting the parameterization (32) and (33)
(i.c., by adjusting the values of \;).

6.2. Numerical Examples

The following parameter values applied to the industrial
X-Y robot (Van Willigenburg 1991) if a,,, Yp (the tink
translations) are expressed in centimeters, ., §, (the link
velocities) in em/s, and i, j, (the link accelerations)

in cny/s?,

v =0, (42a)
v, = 3.0, (42b)
¢ =170, (42¢)
¢y = 96, (424)
b, =170, (42¢)
b, = 88, (421)
Umax = 5.00, (42g)
Smax = 100.0. (42h)

The bound (42g) should be chosen as high as possible,
but leaving enough room for control corrections, which
will be needed o deal with errors caused by uncertainty
and imperfect modeling. The bound should therefore be
experimentally determined and be less than the actual
bound of the control.

From the numerical algorithm, the time-optimal state
trajectory is available at equidistant times ¢,, the distance
At given by (36). To check the accuracy of the computed
time-optimal state trajectories, we computed the time-
optimal control from these state trajectories and the robot
dynamics (6) using the following approximations:

() = (J'p(thU) - ‘i"p("n))/“()AtL
gp(t1t) = (!}p(lll-+-l()) - !/p(tn))/(]OAl)x

Using (6) and the approximation (43), we obtain for
the control

(43a)
(43b)

llJ?(’H) =
(I )(tn+lt)) — & ;(['n))
1/b, ! ! . (44
/)lv ( l()A” + U.l?‘i"[)(tll) + Cr k‘lgn(’p(in)):l ( d)

wy(t,) =
1/ (!)[:((n+ I()) — ;"/p(['n )
Y “()A” + U.l/.l]p(tn) + Cy Sign(!);1([r|))

] . (44b)

From Figure 4A we observe that, except for some
peaks caused by the approximation (44) and by numerical
integration errors at points where (28) and (29) are stiff,
cverywhere one control variable takes on an extreme
value. This result is expected, since from Figure 4B we
observe that the velocity bound (42h) is never reached,
and therefore everywhere X takes on an extreme value,

Figure 5 shows the time-optimal solution for the path
in Figure 3B. The values of the parameters in (42) again
hold, except for (42g), which is replaced by

Unax = 8.00. (45)

From Figure 5, as expected, we observe that if one
of the links moves with maximum velocity, none of the
control variables takes on an extreme value. In the next
section we present the computation and implementation of
a digital optimal feedback controller based on the time-
optimal state trajectories computed in this section, as well
as experimental results after implementation.
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50
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-50

0 s T s T T s TR T s Ty s
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Fig. 4. A, Time-optimal control path 1. B, Time-optimal
solution for path 1.
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7. Computation and Implementation of a
Digital Time-Optimal Feedback Controller

The X-Y robot is controlled by a digital computer. There-
fore, measurements are only performed at certain so-
called sampling instances, t;, & = 0,1,2,..., which
are not necessarily equidistant. Based on the last mea-
surement, a new control is computed and applied to the
system. In between the sampling instances, the control
remains unchanged, since a zero-order hold circuit con-
nects the computer to the robot. Therefore, the control is
constrained to be piecewise constant.

The robot dynamics (6) may be written as

Iy 0 0 I 0 x,
vy 10 0 0 1 Up
Fpl O 0 —vy O i,
.i]]7 0 0 —Uy 0 ._z'/],
0 0 0
0 0 Ug | 0
+ b, 0 Uy | - sign(itp)e, (46)
0 by sign(y,)ey

If both links continue to move in the same direction
from (46), we see that the nonlinear terms representing

430

35

Coulomb friction can be compensated for by constant
values of the control. Therefore, this compensation can
be realized with a piecewise-constant control. Only if
the direction of the motion of a link changes during a
sample interval, the compensation cannot be realized

by a piccewise-constant control. In this case we will

not compensate for Coulomb friction. Therefore, in the
following we will consider the linear system that remains
if we disrcgard the last term in (46)—i.e.,

i=Az+ B, (47a)
where
-,
2= |, (47b)
dp
Lip
00 10
00 0 1
A=10 0 —n ol (47¢)
L0 0 —v, ©
00
0 0
b= b, 01" (@7dy
L O hy
= {”"] . (47¢)
thy

The numerical solution of the digital L.Q tracking prob-
lem for linear time-varying systems (Van Willigenburg
1991) cnables us to solve the following optimal control
problem. Given the linear system (47), its initial state
z(ly), and an arbitrary reference state trajectory,

'/r’ll'(l)
.'I]N(f)
d() ]
Ypr (1)

find the optimal piecewise-constant control,

5t = Fe o tnl, (48)

ul) = ully) £ € [bptepr), k=0,1,2,....N =1,

(49)
which minimizes
Juy = (2(1y) = 2p(t ) H(2(L) = 2,(1,,))
tN
+ [ @ =2)"QU)z — z) + uT Rty dt, (50a)
ty
where
Q>0 telty, tnl, (50b)
Rt >0 telloin] (50¢)
H>0. (50d)

The solution to this problem is given in feedback form,

u(ly) = —Lgx(ly) + i, k=0,1,2,...,N —1, (5D
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where Ly and fy are precomputable feedback matrices
and feedforward vectors, respectively.
We will assume a constant sampling interval—i.c.,

ey =ty =T, k:(),],Z,...,N—], (52)

where T is the sampling time, which equals 100 ms.
Generally, a sampling interval of 100ms is considered
too large for proper robot control (Vukobratovic and
Stokic 1982). However, the digital LQ tracker explicitly
considers the intersample behavior and therefore results
in a proper continuous-time behavior even for a relatively
large sampling interval (Van Willigenburg 1991). The
reference state trajectories z,.(f) will be obtained after
time scaling of the time-optimal state trajectories (12)
computed in the previous section. The time scaling is

sampling time T that is higher than f,,,,. In the previous
section we considered bounds on the control variables at
this stage, and therefore we do not want to compromise
on the choice of the control. Therefore, in (50) we choose

R(t) = 0. (53)

Note that in general the continuous-time and the
discrete-time 1L.Q tracking problems (Lewis 1986), given
(53), result in singular problems, while the digital LQ
tracking problem, given (53), is generally nonsingular
(Van Willigenburg 1991).

We are often only interested in deviations of the pre-
scribed fink positions. Therefore, a natural choice for ()(/)
is

q 0 0 0

10 @ 0 0
QO=14 0o o ol (54)

0 0 0 0

where ¢ is a positive constant. At the final time, how-
ever, we generally want the robot to stand still, so a
natural choice of H is

oo 0 0
o om0 o

H=10 0 n, ol (35)
0 0 0 I

where, again, h; and hy are positive constants. Given
(53), (54), and (55), the optimal digital control and corre-
sponding state trajectory will depend on the ratios /g
and vy /l;. Only the minimum cost will depend on the
absolute values of ¢y, hy, and h,. The following choice is
made based on experiments and a compromise between
the reaching of the final state and the tracking error that
oceurs:

q = 1.0, (56a)
hy = 0.3, (56b)
hy = 0.1, (56¢)

We assume the initial state to match the reference state
trajectory—i.e.,
2(Ly) = z,(4).

This is a reasonable assumption, because before exe-
cuting the motion, we control the system to the desired
initial state z,.(ty). From equations (51), (46), and (48)
and the rules to compensate for Coulomb friction, we fi-
nally obtain the optimal piecewise-constant control w(¢)
for the system (46) given by,

(57)

wplt) = up(lx) = = La(ty) + fi + gr,
k=0,1,2,... N—1,

EE g, try),
(58a)

where

g = [m[sign(.b,,,.(ik))(:r/bx

B , k=0,1,2,... ,N-1, (58b
My SiIgn(Yp, (th))ey /by } ( )

with

my =1, (58¢)
if sign(.i,,(ty) equals sign(ip, (tx41); otherwise,

my =0, (58d)
and accordingly,

my =1, (58¢)
if sign(y,,,(tx) equals sign(g,,(fx4); otherwise,

my = 0. (58f)

From (58) we see that the control law is given in feed-
back form, while the feedback matrices Ly and the feed-
forward vectors f and gy can all be computed a priori.
The optimal state evolution corresponding to the control
law (58), given the initial state z(ty) = z,(ty), we will
denote by zy(¢). Figure 6 shows the first two components
of 2p(t) — 2z,(t), ty <t < ty—i.e., the translation errors
for the X and Y links caused by the piccewise-constant
constraint on the control. Note that the error in practical
situations is not caused just by the piecewise-constant
nature of the control, but also by modeling and mea-
surement errors and uncertainties. Figures 7 and 8 show
deviations with respect to zy(¢) that occurred during ex-
periments with the implemented feedback control law
(58) where the state 2(t) (i.e., the link translations and
speeds) is measured. As can be seen, the errors resulting
from the piecewise-constant constraint on the control and
from modeling and measurement errors and uncertainties
are of the same order. The actual bound on the control is
given by

Umax = 10.0. (59)

Finally, Figure 9 shows the actual controls that resulted
from the implemented control law (58). Obviously the
bounds (42g) and (45) are violated. These bounds hold
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when the initial state and the model are exact and when
we have a continuous-time control. The violation of these
three requirements during application of the digital op-
timal control faw (58) causes the control to violate the
bounds (42g) and (45).

8. Conclusion

The computation of digital time-optimal feedback con-
trollers for an industrial X-Y robot subjected to path
constraints, actuation force constraints, and velocity limits
for the individual links presented in this article consists of
two parts. In the first part an optimal continuous-time,
open-loop control was computed that achieves exact
time-optimal tracking of the path if the initial state of
the system and its dynamics are exact. In practice, be-
cause the X-Y robot is controlled by a digital computer,
the control is piecewise constant and therefore does not
allow exact tracking of the path. Furthermore, both the
initial state and the model are not exact. Therefore,
the second step constitutes the design of a digital LQ
teedback controller that tracks the time-optimal state tra-
jectory obtained from the first step as close as possible.
Depending on the magnitude of modeling and initial state
errors and the sampling interval, the control will deviate
from the optimal continuous-time control and generally
violate its bounds. Theretore, depending on the magnitude
of modeling and initial state errors and the sampling in-
terval, conservative bounds have to be chosen for the first
part of the computation. One may wonder if it is possi-
ble to formulate the problem such that it can be solved
at once. This is difficult, since exact tracking of the path
is impossible while the desired system behavior is not
specified as a function of time, making it very difficult to
formulate an optimal control problem.

Our approach initially assumes an “ideal” situation for
which the time-optimal tracking problem can be solved. It
therefore atlows us to compute the suboptimality caused

by initial state and modeling errors and the magnitude of
the sampling interval. This information helps us to decide
on the choice of the sumpling interval and improvement
of the model.
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