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Abstract: In greenhouse climate control a long term
control strategy can be computed based on a model
describing plant behaviour in relation to indoor climate and
outdoor weather and a criterion reflecting maximum profit.
In these computations the greenhouse climate dynamics,
which are fast compared to those of the plant, are usually
ignored. In the actual short term implementation of the
control strategy, however, neglect of the greenhouse
dynamics leads to serious loss of performance in case of
fast changing weather. In order to maximally exploit the
variability in extemal disturbances short term weather
forecasts are needed. In this paper we demonstrate that the
so called 'lazy man' weather prediction in combination with
a receding horizon controller gives satisfactory results. In
our application to lettuce cultivation a control horizon of
one hour is shown to be the best choice. The horizon length
of one hour is convenient for real time implementation of
the algorithm,
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exploitation.

1. INTRODUCTION

At present climate control in greenhouses is performed by
climate computers that use setpoint controllers to control
temperature, humidity and CO; concentration. A setpoint
controller tries to follow the course of the setpoint of an
individual climate variable. The setpoints generated by the
computer are based on "experience” of the individual
grower and the computer manufacturer. This "experience”
is reflected in many (in the order of 300) climate computer
settings which have to be tuned individually for every

single application. The "experience" is largely based on
rules of thumb. This approach to greenhouse climate
control has many drawbacks. Setpoint controllers do not
properly account for interactions and also the influence of
the outside weather and the costs associated to maintaining
a favourable greenhouse climate are not properly accounted
for. The "experience” of growers and manufacturers tums
out to be very diverse and usually is not based on scientific
knowledge of plant and greenhouse climate behaviour.
Therefore one can state that at present greenhouse climate
control is not performed in the most predictable, scientific
and economic manner. This is unsatisfactory, both from the
point of view of the growers, who seek maximal
profitability, as well as from the point of view of the
government, which desires to reduce environmental
pollution and energy consumption through legislation.

Optimal control is based on a dynamic model describing
the system behaviour and a criterion which is maximised
(minimised) (Bryson and Ho 1975, Lewis 1986). The
scientific knowledge on plant and greenhouse behaviour
can be implemented directly through proper construction of
a dynamic model. This model accounts for all types of
interaction within the system, as well as the influence of
the weather as major external disturbance. The growers'
overall goal to obtain maximum profit can be implemented
directly through a proper choice of the criterion (Seginer
1992). Given a choice of the model and the criterion there
are, in theory, no computer scttings that have to be tuned
while the control, which is computed directly, is performed
in a known, scientific and economic manner.

A major problem in the development of numerical
algorithms for optimal greenhouse climate control is the
fact that the systemm contains both fast dynamics



representing the greenhouse climate behaviour and slow
dynamics describing the plant behaviour (stiff system). It
has been demonstrated that ignoring the fast dynamics
results in serious loss of performance in case of fast
changing weather (Tap et. al. 1993) . One could state that
in order to be able to exploit the effect of the extemal
disturbances - something rather unusual in regulator or
tracking problems, but highly relevant here - the fast
dynamics should be taken into account. The fast changing
weather disturbances prevent the application of "standard”
singular perturbation methods for optimal control of stiff
systems (Van Henten 1994a). However, in the context of
greenhouse climate control, Van Henten's work suggests
that it is still possible to decompose the optimal control
problem and algorithm into two parts (Van Straten, 1994).
The first part deals with the slow dynamics and
disturbances, the second with the fast dynamics and
disturbances. This paper focuses on the second part. To
benefit most from the incorporation of the greenhouse
dynamics in this framework it should be accompanied by
proper short term weather predictions (cf. Ioslovich et al.,
1995). In this paper we demonstrate that the lazy man
weather prediction, which simply assumes the weather to
stay equal to the last measurement, is a proper short term
weather prediction when used in conjunction with a
receding horizon optimal controller. The choice of the
horizon length of the controller is based on an analysis of
the loss of performance compared to the situation where we
have perfect weather predictions. In our examples, which
concern different days in the development of lettuce in a
greenhouse without a heat storage tank, the best horizon
length is shown to be 1 hour. Also we show that the use of
commercially available short term weather predictions
leads to very poor results because these regional predictions
turn out to be very inaccurate locally.

The paper is organised as follows. In section 2 we state the
optimal control problem given an arbitrary fixed horizon
length. In section 3 we describe the receding horizon
optimal controller and the numerical algorithm to solve the
successive optimal control problems involved in it. Results
obtained with the receding horizon optimal controller for
several horizon lengths and three types of weather
predictions are also presented. Perfect weather predictions,
the lazy man weather predictions and commercially
available short term weather predictions are considered. In
section 4 the results as well as possibilities for future
research are discussed.

2. THE OPTIMAL GREENHOUSE
CLIMATE CONTROL PROBLEM

A general optimal control problem is formulated as follows.
Given a (non-linear) system described by n first order
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differential equations,

k=f(x,ut), xeR" ueR” (2.1)

where u is a vector of m control variables and given the
initial state of this system,

x(’o) =X (22)

maximise (minimise) the criterion,

J(u(!),x( t.,).to.t,) = D(x(¢y)) + IL(x(r),u(t),t)dt (2.3)

The optimal greenhouse climate control problem consists of
a dynamic model describing both the greenhouse climate
behaviour, i.e. the fast part of the dynamics, and the plant
behaviour i.e. the slow part of the dynamics and a criterion
representing maximum profit over the control horizon
[0t . The model equations are given in the appendix. For
a list of symbols and the list of parameter values one is
referred to (Tap et. al. 1995). The model is almost the same
as presented in (Tap et.al. 1993) except for an additional
equation describing the dynamics of the heating tube
temperature (Eqn. A.3). Altogether there are seven state
variables.

Equations (A.I-A.2, A4) for the dynamics of the
greenhouse temperature and CO, concentration have been
taken from Tchamitchian er. al. (1992) and are mainly
based on the model of Udink ten Cate (1985). Equation
(A.7) which describes the dynamics of the water vapour
concentration is based on Van Henten (1994b). Finally,
equations (A.5,4.6) which describe the lettuce crop growth
are taken from Van Henten (1994b).

Given the decomposition of the control problem based on
singular perturbation theory the criterion needed to
compute the short term control action model would be
given by

oy :
J = I(""‘W' + X.W, - o9, - osHo - PR)“ (24)

te

where @; is the CO; injection rate, with an associated price
o2, H, the heat input to the pipe system, with price a3, P
a penalty function on humidity constraints, to be explained
below. The variables A, and A, represent the marginal
value of the rate of increase of non-structural dry weight
W, and structural dry weight W, resp. These variables are
co-states that should be computed from the solution of a
seasonal optimization, assuming average seasonal weather
and a static greenhouse assumption. The co-states act as a
marginal price. Note that the price is a time variable part of



the criterion and is different from the price of lettuce
received at the end of the growing season (van Henten
1994a). Since both structural and non-structural dry weight
are sold on the market, the difference vanishes at the end of
the crop growth period (Van Henten, 1994a). We have
assumed the crop to be 40 days old. Therefore, in this
study, the distinction between the two variables was
dropped. Moreover, for the time being, it has been assumed
that the costates do not vary significantly within the
horizon of the short term optimization, which is a couple of
hours here as will be shown later. So A, and A, are assumed
to be equal to the price of lettuce at the end of the growing
season. With these assumptions the criterion reduces to

fy
J = (-1 AW+ AW,) - [0z, + asHy + Prldt

te

(25)
where,
5¢107(70-R) R, <70
P, = 0 70<R <90. (2.6)
5¢107(R-90) R 290

The first term on the right of equation (2.5) represents the
money obtained from growing lettuce from ¢=¢, until t=¢.
The first term of the integrand represents the costs
associated with CO;, dosage, where we assumed a fixed
price for CO;. The second term of the integrand represents
costs associated with heating. The remaining term of the
integrand represents penalties associated with the violation
of humidity constraints. These constraints provide a means
to prevent the system from moving into regions where
effects occur that have not been incorporated into the
model. The humidity, for instance, influences the
vulnerability to diseases, which is not described in our
relatively simple model. In effect, a grower can use the
humidity constraints to express his willingness to take
risks.

The criterion, representing a mix of direct profit and a ‘risk
insurance premium', is maximized by searching for optimal
control sequences of CO; dosage ¢ji(t), and of heating input
ry(t), hidden in the term H,, and window opening ry(t).

The initial state of the system is,

)= (T, T T G Vit W) W)

=(13 14 15 065 00085 16 74) (2.7)

The controls have technical bounds given by
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0<r,<100 % 0 < r, <100%, 0<@, <5107 gs'm™ (2.8)

3. RECEDING HORIZON OPTIMAL
CONTROL ALGORITHM AND RESULTS

After each sampling instant s;, i=0,/,2,... at which all
measurements and controls are updated a receding horizon
optimal controller computes the solution to a new optimal
control problem. The initial time ¢, of each problem equals
the last sampling instant ie.,

th=s5,i=0]12,...

The initial state x(s;), i=0,1,2,... of each problem is adjusted
using the measurements at s; and the model. The final time
tr of each problem is adjusted according to,

(3.1)

1,=5+1, (3.2)

where ¢, is the fixed horizon length of the receding horizon
optimal controller. OQur controller uses a fixed sampling
period of 1 minute i.e.,

Sy~ =T=060s,i=012,... (3.3)

so measurements and controls are updated every one
minute. This implies that every one minute an optimal
control problem has to be solved on-line. To compute
numerical solutions to optimal control problems a
discretization in time has to be performed. In our case the
discrete time step in the computation was also one minute
ie.,

So each numerical solution consists of controls for every
one minute within [s;,s;+t], i=0,1,2,... i.e.

u(s, + kAt), k =o.1,2,..,-2-“t--1, i=012,.. (35)
However these controls, which have to be computed on-
line, become available only at the next sampling instant
Si+1=5;+T=s;+At. So from each optimal control sequence
(335) only the value for which k=1 is actually applied to the
system. The algorithm used to compute the optimal control
sequences (3.5) was of the first order gradient type (Bryson
and Ho 1975 pp.221) where the successive improvements
of each optimal control sequence

Su(s,+ kAt),k =0,12,..,t,/ At-1 are computed according
to,



sut, +ka =08 k=012 (36
oul,.. At
where H is the hamiltonian, defined by
H=(0,9,+0,H, +P)+Xf (3.7)

with A a vector of co-states, and f the right hand side of

Eqn. (2.1), and where 9 is chosen to minimize the
criterion which constitutes a line search. All controls are
bounded from above and below so equation (3.6) only holds
for each control variable if its bounds (2.8) are not violated.

The receding horizon optimal controller just described was
simulated during 24 hours using weather data of several
selected days out of a season in which lettuce was grown in
a greenhouse. In these optimization calculations the non
differentiable nature of the penalty function (2.6) did not
cause any numerical problems. Figure 1 shows the
performance using three different types of weather
predictions for different values of the fixed control horizon
t,. The line at the top represents the outcome of the
receding horizon optimization using perfect weather
predictions. The middle line is obtained when the
assumption is made that the actually observed weather
remains the same over the specified horizon. Since the
control is updated every minute, also this 'lazy man weather
forecast' is updated every minute. The lower line is
obtained by using commercially available hourly weather
predictions over the next 24 hours, which become available
at 7 am and 11 am. These forecasts were used without
looking at the actual weather.

From Figure 1 a number of things can be concluded. All
results can be compared to the theoretical best solution
which is obtained by computing the optimization over the
complete day using perfect weather predictions, i.e. when
in Eqn. (2.5) t,=0 h and #=24 h, In this situation a
criterion value is found of 1.405-10”. By comparing this
with the value obtained with the receding horizon
controller using perfect weather forecasts it can be seen that
the loss due to the use of a receding horizon controller in
stead of the open loop solution is only 1% if a two hour
horizon is taken. One could say that the control action
needed at time ¢ is hardly influenced by the weather at time
t+2 hours or more. The converse is also true: the loss
increases as shorter control horizons are used, indicating
the significance of anticipating the weather in view of the
dynamics of the system.

Both the optimal (open loop) solution and the perfect
weather receding horizon solution represent a theoretical
condition not achievable in practice because the weather
cannot be known in advance. Therefore it is interesting to
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look at the loss in performance when the lazy man
prediction is used. When the control horizon is relatively
long, apparently the deviations from the actual weather
become so large that they have a marked effect upon the
compu&ed control gction. The criterion value drops from
1.4-10 t0 0.84-10°". There is, however, an optimum choice
for the control horizon in this case. Using a receding
horizon controller with a control horizon of 1 hour in
combination with the lazy man weather prediction results
in a loss of performance of about 15% with respect to the '
unachievable optimal solution, and of only 6 % with
respect to the receding horizon solution using perfect
weather. A control horizon of 1 hour is the best choice in
case the lazy man weather prediction is used. Furthermore
a control horizon of 1 hour results in real-time
implementable control algorithms on a PC Pentium/60 if
the sampling interval T is 1 minute.

Using just commercially available weather predictions
without looking at the actual weather results in serious loss
of performance which increases with an increasing control
horizon. Of course, it can be expected that improvements
will be possible if such forecasts are combined with actual
measurements, for instance by modifying the lazy man
prediction on the basis of the trend in the forecasts.
However, the results of the lazy man optimization show
that the maximum gain in performance that can be
achieved when the lazy man weather prediction is replaced
by other types of weather prediction and/or measurements
is in the order of 10% only.

4. Discussion and future research

Several questions as to the results presented in section 3
arise. Results have been presented for one selected day,
where fair variations in weather occurred. Repetition of the
computation for other days showed about the same or
smaller loss in performance. It can be expected that the
differences are smaller when the weather behaves in a more
predictable way. This underlines the feasibility of the
receding horizon optimal control.

In the computations we assumed a constant price for lettuce
during the day. As said before, this price should follow
from an optimization of the slow problem resulting from
the decomposition according to singular perturbation
theory. Van Henten (1994a) reports co-state patterns of
lettuce over the season suggesting that the variations within
a day are small, as compared to variations over the season.
So, the assumption of constant process over 24 hours is not
unreasonable. The final implementation of the receding
horizon controller requires that first the seasonal
optimization is solved. This can be done beforehand, using
average weather data.



All our results are based on simulation and optimization
using the model (A.1-A.7). The results are therefore
conditional on the assumption that the model is a
reasonable approximation of the real system. The crop
model is validated in a field experiment (Van Henten,
1994b). Yet future work should include a series of
comparative tests between the proposed controller, and the
best available commercial control systems, over a whole
growing season. Another subject of future research will be
to investigate to what extent the optimal control is affected
by uncertainties in model parameters and structure.
Because the model had to be used in a control context, the
order was kept as low as possible. The choice of model
order should be guided by its computational complexity and
accuracy. The advantage of an economic criterion is that
this decision can be made in direct economic terms.
Furthermore the robustness of this controller is a subject
that needs more attention.

Several aspects such as the occurrence and influence of
plant diseases are not described by the model. In particular,
condensation on the leaves, which is most likely to occur in
the early morning hours, is known to increase the
vulnerability to diseases. Therefore the violation of bounds
on humidity are punished in the criterion (2.5). The
optimization will then naturally be constrained. The stricter
the bounds are specified, the less room there is for
economic optimization. The choice of these bounds is up to
the grower, but in a practical implementation the effect of
these choices could be presented to the grower as a means
of influencing the control by weighing of risk against
profit.

The modelling of lettuce growth is relatively easy as
compared to other crops. The economic importance of
lettuce in our region, however, is limited in contrast to, for
instance, tomatoes. Therefore, further research is directed
to the growth of tomatoes in greenhouses. Yet, the adopted
approach to optimal control using a decomposition into a
slow seasonal problem and a fast short term problem in
combination with feed-back by a receding horizon optimal
controller remains the same. We expect that also in case of
tomatoes and other products the lazy man weather
prediction will serve as an easy and appropriate short term
weather prediction. It has to be noted that the assumption
was made that CO, was freely available. In cases where
CO; is generated by gas burning combined with heat
storage, there is an additional constraint due to the
restricted capacity of the heat storage.

Finally the real-time implementable numerical algorithm to
compute successive optimal controls can be improved.
Many algorithms for solving optimal control problems are
known (Bryson and Ho 1975, Sage and White 1977) so
there are possibilities for improvement of the numerical
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efficiency of the algorithm. This allows for the use of
smaller sampling intervals or slower computers. The
accuracy of the time discretization performed within the
numerical algorithm can be improved which also allows for
application of more general sampling schemes (Van
Willigenburg 1994) and larger sampling intervals. The
optimal control algorithm usually computes a local
minimum where we actually desire a global minimum. In
practice, this may be less serious than it seems, because
performance in any case improves as compared to setpoint
control. Yet, by enforcing proper initial conditions we may
be able to guarantee the computation of global minima.
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Figure 1 : Criterion value in Dutch Guilders (f1) against the optimization horizon.
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