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Abstract. In case of optimal greenhouse climate control the fast greenhouse dynamics are generally ignored. Only
the slow dynamics that describe the crop behaviour are considered. Through the computation of optimal climate
controls for growing lettuce in greenhouses, subjected to actual weather, it is demonstrated that the neglect of the

greenhouse dynamics seriously affects the result (net profit).
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1. INTRODUCTION

The profit obtained from lettuce crop production in
greenhouses is mainly determined by the production
rate, the price of lettuce, and the costs associated with
maintaining a favourable climate in the greenhouse.
The control of the temperature, the CO,-concentration
and the relative humidity, the main climate variables
in the greenhouse, results in conflicting interests
concerning heating, ventilation and CO, supply, the
main control variables. At present hierarchical rules

based on experience guide the choice of setpoints for

temperature, CO,-concentration and relative humidity.
In reality the market gardener does not want to realize
setpoints but he wants to maximise profit.

Optimal control of greenhouse climate entails the
operation of the control variables such that the
economic profit of the grower is maximised. The
basis of this approach is a crop model that describes
the crop behaviour under influence of the indoor
climate conditions which in turn are determined by
the outside weather conditions and the exerted control
actions. This system is characterised by both fast and
slow dynamics, the first associated with the green-
house climate and the second with crop growth. The
computation of optimal controls for such systens
raises numerical difficulties (Kalman, 1964). In the
literature solutions for the seasonal optimisation
problem have been presented assuming slowly chang-
ing weather (e.g. Seginer, 1992; van Henten and
Bontsema, 1991). As the dynamics describing crop-
behaviour are much slower than the physical green-
house dynamics, the latter can be ignored in this case
and seasonal optimization can treat the physical
climate as immediately realizable through the control.

It can be shown that the error by assuming the green-
house dynamics to be infinitely fast in these type of
calculations is small (van Henten and Bontsema,
1992). However, because the weather in reality
changes fast and is a dominant disturbance, it is no
longer obvious that the greenhouse dynamics can still
be ignored. To compute optimal controls the weather
should be completely known over the time interval
over which the optimisation takes place. Since long
term weather predictions are unreliable we are con-
fronted with a trade off concerning the choice of this
time interval. If for instance we take it small the
weather predictions used will be good and we have
no numerical difficulties, however the system behav-
iour in the long run is not taken into account.

Our aim is to determine the effects of neglecting the
influence of the fast changing weather and the fast
greenhouse dynamics on the calculated optimal
control. To do this we will consider the optimisation
over a short period of time (compared to the growing
period) for the situation with and without greenhouse
dynamics and by using either measured weather data
or a smoothed version of it. It is assumed to be
known in advance what the weather will be like every
minute (perfect weather prediction). The criterion of
comparison will be the profits made when the optimal
controls resuiting from each of these four combina-
tions are applied to the system modeled by fast green-
house dynamics subjected to the measured weather
data.

2. OPTIMAL CONTROL PROBLEMS

The crop model describes the crop behaviour under



influence of the indoor climate conditions, which in
turn are determined by the outside weather conditions
and the exerted control actions. This can be
formalised as

dx
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in which x, are state variables that represent the
indoor climate,
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where T, is the greenhouse temperature, T, is the
greenhouse soil temperature, C; is the greenhouse CO,
concentration and V; is the greenhouse water vapour
density. The variable x, represents state variables
associated with crop development,
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where W, is the non-structural dry weight and W, is

the structural dry weight of the crop. The- external
inputs u, are given by '
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where T, is the outside air temperature, G is the
incoming shortwave radiation, w is the wind speed,
C, is the outside air CO, concentration and R, is the
outside relative humidity. Finally the control u, is
defined by

U, H
uc = ud = r" (6)
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where H is the heat input, r, is the relative window
aperture and ¢, is the CO, injection flux. Given the
model (1)..(5) the goal is to maximise the criterion,
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which represents the profit made within [0,¢). The
function & represents the benefits obtained from
marketing the product at the final time f. The func-
tion L represents the cost made at any instant in time
related to CO, injection and heating.

The problem simplifies when the indoor climate is
considered so fast, that it is practically memory-less
compared to crop growth. In that case f is considered
to be zero and then x, algebraically depends on u,, u,
and x, and the model can be formalised as

dx
—d‘l = h(x,u,u) ®)

To investigate the importance of considering the
greenhouse dynamics results obtained with the model
(1), (2) are compared with those of (8). The functions
f (van Henten, 1993), g (Tchamitchian et al., 1993)
and J are described explicitly in the appendix. The
function & can be derived from f and g.

For lettuce the function ® equals the weight of the
heads of lettuce times the price of the product per
kilo. When an optimisation is carried out for one
season the price is the auction price, which we con-
sider to be known. The growth of the crop at different
times during the season has different meaning for the
final weight of the product. In order to perform an
optimisation for a part of the season, the price must
reflect the relative importance of that part of the
season. Van Henten has shown that the course in time
of this importance is almost independent of the
weather. So the price used in short term optimisations
can be determined on the basis of long term consider-
ations. Because this has not been done yet, the price
used here is only an estimation. Since our goal is to
compare optimal solutions this is not a serious draw-
back.

3. COMPUTATION OF OPTIMAL CONTROLS
AND COMPARISON

The relative humidity is not part of the crop growth
model. It is believed however that the humidity
should stay within certain borders. To enforce this we
have introduced in L a penalty function P which
punishes exceedings of those borders.

The optimal control is obtained by solving the associ-
ated two point boundary value problem (TPBVP) with
a first order gradient algorithm. To discover the influ-
ence of the greenhouse dynamics this is done for both
greenhouse model (1), (2) and greenhouse model (8).
The influence of fast varying weather on the optimal
control is determined by calculating the optimal
control for both measured weather and a smoothed
version of it. This provides four situations: dynamic
greenhouse model (1), (2) and measured weather
(dm), dynamic greenhouse model (1), (2) and
smoothed weather (ds), static greenhouse model (8)
and measured weather (sm) and static greenhouse
model (8) and smoothed weather (ss).

The smoothed version of the weather is obtained by
applying a moving average filter over a two hours



period to the measured weather data, where the result
is assigned to the middlemost point of that period.

To make a relevant comparison we simulated the
behaviour of the greenhouse model (1), (2) influenced
by the measured weather and the optimal controls
generated by the four different options. In table 1 the
results are given. The criterion value is divided into
the net profit without considering the humidity
bounds and the "penalty” costs associated with violat-
ing the humidity bounds. The penalty function is such
that the associated costs are small compared to the
real costs while keeping the humidity reasonably
within its bounds. So a trade off exists between
exceedings of the humidity bounds and the profit
made by doing so. The window opening and the heat
input are largely determined by the humidity bounds.
Without humidity bounds the heating is turned off
while the windows are closed during daytime and
opened at night to cool the greenhouse. With the
humidity bounds the heat input and the window
opening are completely different.

The influence of the fast greenhouse dynamics

emerges from the comparison of Fig. 1 and 2. Both

sm and dm try to provide a high CO,-concentration
when there is a lot of radiation, but only dm is
successful. Because din considers the greenhouse
dynamics it starts to dose CO, about 20 min. before
there is a radiation peak. Because sm does not con-
sider the greenhouse dynamics it doses CO, at the
moment there is a radiation peak. Table | shows the
consequences on the profit of this. Because ss is
based on smoothed weather the controls are slowly
varying and ss yields a better result than sm. Ds does
not consider the fast weather variations. That’s why
ds yields a poorer result than dm.

4. DISCUSSION

Optimal control yields the best results when the
system behaviour is completely known in advance.
This implies perfect knowledge of the state equations
and of the disturbances. The optimality of the controls
is heavily influenced by the accuracy of the green-
house dynamics, the crop dynamics, and the weather
predictions. This calls for an accurate dynamic model
and good weather forecasts. In case of the crop
dynamics for example a better knowledge of the
influence of humidity on crop growth would improve
the control and make the penalty function redundant.

From the differences between ds and ss it is evident
that the greenhouse dynamics have a considerable
influence on the optimal control and corresponding
profit. This influence is bigger when the weather is
less smooth (dm versus sm), because this causes a
non smooth control which together with the fast
changing weather activates the fast dynamics which

can then no longer be ignored. Therefore if, in the
optimization, the fast dynamics are considered short
term weather predictions, which are hard to obtain at
present, are also needed. This need may open a new
direction of research. In practice the possibility to
obtain reliable short term weather predictions will
determine if we will actually gain by taking into
account the greenhouse dynamics.

Table 1 Optimisation results (f/m?)

Penalty Protit Criterion
ds 76107 14.1-10° 65107
dm 03-10° 145-10° 142-10°
ss 2.8 - 107 84 -10° 56107
sm -1.1 -10° 63+10° 52-10°
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6. APPENDIX

" 6.1. Indoor Climate And Crop Model

The temperature dependence of g, given by van
Henten (1993), which is only valid for temperatures
between 5 °C and 40 °C, has been modified to
enlarge its domain of validity.
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6.2. The Criterion
Y

J = a(1-t)(W+ W,)-f(¢2¢,+ o, H+P)dt
0

6.3. Model Parameters

C, = 3210 JK'm?  k =79 W.m>K!

5 =0.7 C, = 120+10° J.K".m?
k, = 5.75 W.m2.K"' k, = 2.0 W.m2K"

T, = 10.0 °C V/d, =3.0m

M, = 1.29 kg.m? C, = 10° J.kg' K"

x = 5.03+10° m.s" A = 4.02-10°

y = 3.68+10° t, = 0.55

p = 0.45 o = 30/44

B =08 K =029

8 = 0.075 m’.g" r = 0.07

w = 1.83+10% g.m2.ppm” ¢, = 17+10° g.J?

g, = 0.005 s.m’ g, = 0.007 s.m™
gs = 0.3 s.K.m" g, = 24K

gs = 15K Tw = 5.8°10°5s"
0, =16 Iy = 40 ppm

o = 2.0 r,=3.47-107s!
r.=1.16+107 s 0, =20

C, = 3.53+10° m.s" a, = 1.32 kg.m?
o, = 0.02 f.g' a, = 1.210* f.g!

oy = 7.3+10° f.W!

6.4. CO, Conversion Factor
1 & - 8314(T+273.15)
m®  44.107x1.107°x1.01.10°

ppm



