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Abstract,

Present day climate control in greenhouses |is
realized by setpolnt controllers, the setpoints
being determined by hierarchical rules and/or
growers experience. The cholce of appropriate

setpoints involves a lot of conflicting
interests. Furthermore most setpoint
trajectories cannot be reallized 1in practice

because of system constraints. Optimal control
allows us to use explicit knowledge about the
system behavior to determine an optimal
compromise between conflicting interests in
climate control. 1In our case the optimal
compromise constitutes the maximization of
profit from growing tomatoes in a greenhouse.

Based on a simplified model which describes the
growing of tomatoes in a greenhouse and the
costs associated with climate control, we will
compute optimal controls, 1i.e. the heating,
carbon dioxide supply and ventilation of the
greenhouse, using a first order strong
variations algorithm, in a first attempt to

improve the climate control. The results as well
as problems assoclated with the application of
optimal control to greenhouse climate control,
such as fast varying unpredictable weather
variations and the stiff nature of the system,
will be discussed.

1. Introduction

The profit obtained from tomato crop production
in greenhouses 1is mainly determined by the
production rate, the price of tomatoes, and the
costs associated with maintaining a favorable
climate in the greenhouse, along with the
growers ability to prevent or stop pest or
disease development. Present climate control of

greenhouses 1s mainly achieved by trying to
maintain predefined setpoints, without
considering system constraints and the
assoclated costs of this operation. Furthermore
the control of temperature, humidity and <arbon
dioxide concentration, the main climate
variables in the greenhouse, result in
conflicting interests concerning heating,
ventilation and carbon dioxide supply, the main

control variables. At present hierarchical rules
guide the choice of setpoints for temperature,
carbon dloxide concentration and ventilation.

Given the conflicting interests and the non-
linear multivariable nature of the greenhouse-
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tomato crop system, together with the desire to
consider the costs of malintaining a certain
favorable greenhouse climate, the application of
optimal control seems natural. Dynamic models of
the multivariable greenhouse-tomato crop system
are avallable (Bot 1983, Jones et. al. 1989)
even if not thoroughly describing "it, mainly
because some interactions (pest development
versus climate for example) are insufficiently
known and may be of a stochastic nature. Given
a model of the multivariable greenhouse-

such
tomato crop system, which describes (part) of
the {interactions, an integral costfunctional,

which reflects the profit (i.e. the income minus
the costs) of the tomato crop production, is
maximized. In this way we make more intensive
use of the knowledge about the greenhouse-tomato
crop system while attaining what is truly our
goal, namely maximizing profit. oOptimal control
has recently been applied with success to
optimize tomato and lattice crop growth in
greenhouses but on a theoretical basis (Van
Henten and Bontsema 1991, Seginer 1991).

Several problems associated with the application
of optimal control to the greenhouse-tomato crop
system have to be mentioned as well. The system
is characterized by both fast and slow dynamics,
the first are assoclated with the greenhouse
climate the second with «crop growth. The
computation of optimal controls for such systems
ralses numerical difficulties (Kalman 1964).
Freedman and Kaplan (1976) presented a way to
overcome these problems for systems without
external 1inputs. The greenhouse-tomato crop
system behavior however, is heavily influenced
by fast changing outside weather conditions,
which trigger the fast system dynamics
permanently, making it impossible to apply the
result of Freedman and Kaplan. The weather
presents yet another difficulty. To compute
optimal controls the weather should be
completely known over the time interval over
which the optimlzation takes place. Since long
term weather predictions are unreliable we are
confronted with a trade off concerning the
cholce of this time Iinterval. If for instance we

" take it small the weather predictions used will
be good and we have no numerical difficulties,
however we do not consider the system behavior
in the long run in this case.

our first aim is to investigate what can
possibly be galned through the application of
optimal control, compared to the existing

setpoint control strategies. In a first attempt
we will focus on temperature and carbon dioxide
management, thus ignoring the water balance of
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the greenhouse and tne humidity control although
it does influence the control. Given the
problems mentioned above we will consider the
optimization over a short period of time
(compared to the growing period) and use
artificially generated and measured weather data
which we assume to be known in advance (perfect
weather prediction is assumed). Over a short
period of time the slow dynamics of the system
may be regarded constant which simplifies the
dynamic model. In section 2 we present the

simplified model describing the growth of
tomatoes in a greenhouse. In section 3 we
present the optimal control problem and
numerical solutions, given several types of
weather. Finally we conclude the paper |in

section 4.

2. Dynamic model of the greenhouse-tomato crop
system,

The model of the greenhouse-tomato crop system
is taken from Tchamitchian et. al. (1992) which
is mainly based on three models proposed in the
literature. Two of them (Bot 1983, Udink ten
cate 1983) describe the greenhouse climate
dynamics to which the carbon dioxide balance was
added, and the third (Amthor and McCree 1990)
describes the dynamics involved in tomato crop

growth. Finally the physlological functions
which involve photosynthesis and respliration
have been taken from Jones et, al. (1989). From

the control point of view it is important to
distinguish state "variables which are ' typed
capital bold, control variables which are typed
small bold, external inputs which are capital,
dependent quantities which are capital Greek,
and constants (system parameters or quantities
which are assumed to be constant) which are
small.

2.1 The greenhouse climate model.

The greenhouse model has to fulfill different
requirements:

- it must provide the greenhouse weather
variables necessary to the «crop growth
model, namely the greenhouse ajir temperature
and carbon dioxide content and the
greenhouse PAR irradlance (the visible part
of the solar radiation);

- forecasts of the external weather (the
disturbances) must be available; these are,
in general, the minimum and maximum air

temperature, .wind speed and solar radiation.

Therefore, we choose a simplified greenhouse

model (Udink ten Cate 1983) which has two state
variables, the greenhouse air and soil
temperature, T, and T, respectively, and take

into account the heating h(t) and ventilation of
the systen,

dT,/dt=1/C, [ (A(t)+k, )(To(t )-Tg(t))+h(t)

+H (T (t)=Ty(t))+nG(t )], (1a)
dT,/dt=1/¢,(Jt,(T(t)-T,(t})
+hy(ta(t)-T, (L)), (1b)

where ¢, and ¢, are the soil and greenhouse
heat capacity, T, is the outside temperature and

t, the soil deepest layer temperature and G the
while n is the

incoming solar radiation
radiation efficiency. Furthermore k, is the roof
heat transfer coefficient and k, the soil to

soll heat transfer coefficient. They are related
to roof and wall convection exchanges and soil
conduction and convection exchanges. The
ventilation transfer coefficient A is given by

At )=myc,®,(t), (1c)

where m, is the air density, c, the air specific
heat and %, the ventilation.

This model approximates all convection heat
exchanges to flrst order processes, while the
radiation is taken as a direct heating source.
Its efficiency <coefficient is more of a
calibration parameter and has no real physical
meaning; it allows for the indirect taking into
account of the infrared radiation exchanges
between the greenhouse and the sky vault, which
are not described here because the associated
weather forecast (IR irradiance from the sky) is
not avallable.

N classic carbon dioxide balance has been added
to this model, including the crop activity,

dCy/dt=a /v [®,(t )(Co(t )=Cy(t))
e ()8 (t)-0(t)], (1d)

where C; is the carbon dioxide concentration in
the greenhouse a; and v, are the greenhouse area

and volume respectively, €, 1is the outside
carbon dioxide concentration, ©., and Q. the
respiration and photosynthesis of the tomato
crops respectively, while ¢, 1is the carbon
dioxide injection.
The ventilation, controlled by the window
opening and driven by the wind speed |is
calculated by an empirical relationship,
calibrated on the same greenhouse as the
greenhouse model,

¢, (t)=a,+tbW(t)+c W(t)r, (L), (le)

where a,,b, and ¢, are renewal rate parameters,
W is the wind speed and r, the relative window
aperture.

Finally, the greenhouse PAR irradiance Ij, which
is an external input to the crop model described
in section 2.2, is calculated by an algebraic
equation assuming a constant greenhouse
transmission t; and a constant ration p between

solar radiation G and its PAk fracvioun,

Fg(t )=t ,pG(t). (1r)
2.2 The crop model,
Basically we are interested in the fruit

production of the crop, which in our case is a
continuous process because of the structure of
the greenhouse tomato crop which bears at the
same moment fruits of different ages, ranking
from fecundated flowers to ripe and ready to
harvest tomatoes.
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Because of the long term unpredictable nature of
the weather and and the problems associated with
the stiff nature of the greenhouse tomato crop
system we concentrate on the short term
optimization of the tomato-greenhouse system and
we Will use a simplifying hypotheses. :

While in the production stage, the tomato can be
assimilated to a steady state system in which
the apparition of new  young fruits is
compensated for by the harvest of old ones. Over
short time intervals, the change of weight of
the leaves and stems is little compared to that
of the fruits and can be neglected. Thus we make
the following hypotheses,

~ the crop dry weight and leave area index are
external variables that do not change during
the optimization;

~ the dry welght accumulated in the fruits and
which should be harvested some time later is
immediately removed and given the value of
the selling tomatoes.

The harvest 4, in this case is proportlonal to

Ehe difference of photosynthesis and respiration
.e.

Bo(t)=g.(N(L)-8,(L)) (2a)
where g, is the growth conversion efficiency, a
factor taking into account the respiratory cost
of the growth. .

Classical relationships have been used to
describe the photosynthesis n, and the
respiration 6, (Jones et. al. 1989). For the
photosynthesis we have,
(1-m)E(C Jockly(t)
N.(t)=X(t )k log ¢ (2b)

(1-m)E(t)+ekly(t ) el

where € 1s the leaf quantum yleld efficlency, k
the 1light extinction coefficient, m the leaf
light transmission factor, and 1 the leaf area
index. For Z(t) we have,

E(L)=T Co(t )torr¥

(Tq(t )"‘C,“,‘)(T“(C )'tmak)
1- ’ (2¢c)

(Tq(t )-tmlr\)z('rg(c )—tmax)z*cc

where Corne bmaxr te and Ceorr are known
temperatures and t. is the leaf carbon dioxide
efficiency. For the respiration we have,

T,(t)-20

e,=mq 19 pwv (2d)

where m, is the ratlo between CO, and CH,0 molar

masses, q the resplration temperature factor, p
the maintenance respiration factor and w the
total dry welght of the tomato crops.

We are aware that the .dynamics of the crop
growth process 1is ignored in this very simple
model and especially the buffering facillity
provided by the 1long period of dry matter

accumulation In the frults. But there seem to be
no simple way to include them when considering
the crop on the basis of a one or two days
periods. By ignoring this dynamics, we introduce
the following pattern in the model: during night
period, when there is no light, no gain is
possible but losses of dry matter (and thus
harvest) occur due to the respiration; harvest
is only accumulated during daylight period.

and numerical

3. Optimal control

solutions,

problem

Given a dynamic model of the controlled system
in state space form i.e.,

dx/dt=f(x(t),u(t ), d(t),t), (3)
where the vector x contains the state variables,
the vector u the control variables, and the
vector d the external inputs an optimal control
problem is to find the control wu(t) which
minimizes the integral costfunctional,

tr

J(u(e), x(to))= [Lix(t) uce), dce), ¢ )de (4)
Co

where t, and t, determine the interval over

which the integral is minimized while we assume
x(t,) to be known (Lewis 1986). The gquantity L
is referred to as the cost function. The
dynamics (1), (2) can be written in the form
(3). The profit over some time interval equals
the income from the harvested tomatoes, assuming
a fixed price over the growing period, minus the
costs of maintaining the greenhouse climate
during that time interval which for instance
involves the price of carbon dioxide gas and the
price of the energy needed to heat the
greenhouse. Since (4) is minimized to maximize
profit we obtaln,

L(x,u,d, t) = -[a;8,(t )¢ (t)-azh(t)], (3)

where «, is the price of tomatoes, expressed in

dry matter to match the units of the harvest,
and o, and o, are the costs of carbon dioxide
and the heating. The window operation does not
involve any cost. For detailed information
concerning the model and costfunctional we refer
to Tchamitchian et. al. (1991).

The model and the costfunctional turn out to be
linear in the controls. From optimal control
theory it is well known that in this case the
optimal control 1is of bang-bang type if the
problem is non-singular. The optimal control may
be obtained by solving an associated
two-point-boundary-value problem (Kalman 1964,
Lewis 1986). However in most cases of bang-bang
control the associated two-point-boundary-value
problem (TPBVP) 1is very sensitive to boundary
conditions and integration errors causing

‘numerical difficulties. For these problems first

order gradient algorithms (Kalman“  1964),
designed to solve optimal control problems, are
much more appropriate since they suffer much
less from sensitivity problems. We have chosen a

"first order strong variations algorithm"
described by Mayne and Polak (1975) which
differs from first order gradient algorithms
only in the sense that the adjustment of the

controls at each iteration is performed in a
somewhat different manner which may result in
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faster convergence. We computed several optimal
control histories in case of both artificlal
smooth and measured weather data. In the latter
case the optimal control exhibits several
switches because of the fast weather variations.
Figure 1 illustrates the main results obtalned
with the artificial weather. The maximum profit
obtained is 0.062 Dutch guilders per square
meter over this day. Figure 2 amounts to weather
recorded at 2 October 1991. The maximum profit
in this case equaled 0.098 Dutch guilders per
square meter on this day.

The results obtained with the artificial weather
data set exhibit little use of the controls,
maintaining the windows open at night and
increasing the carbon dioxide content of the
greenhouse in the fist part of the day. A short
pulse of enrichment occurs by the end of the day
to increase again the carbon dioxide content,
just after the windows were opened again, likely
because the wind is now low enough to limit the
losses towards the outside air. The underlying
strategy is to reduce the dry matter losses at
night by lowering the temperature (using the
outside air to cool the greenhouse) and then
increasing the photosynthesis by carbon dioxide
enrichment. A trade off is found between the
costs of carbon dioxide leakage (enrichment and
windows opened) and the associated gain. No use
of the heating 1s made, because the only
requirement occurs during daylight perlod

(photosynthesis need a minimum 14°C) and then
the solar radiation provides enough energy to
satisfy them.

When using real weather data sets, the results
show a much more intensive use of the control
but still pertain the same strategy. Window
control at night mainly depends on the
variations of the outside alr temperature. When
it decreases, they are opened for «cooling
purposes, and closed when it increases to keep
the fresh air inside the greenhouse. This ls
completely true in the final part of the
integration perjiod where no interaction with the
carbon dioxide control can happen (it is not
worth to use it because there will be no
photosynthesis to consume profitably this carbon
dioxide). Again heating does not occur.

These results do not fit the common practice
which 1is to maintain the temperature above a
minimum 15 to 16°C and enrich to a maximum level
of 1000 ppm carbon dioxide concentration. The
physiological basis of these practices are not
all clearly stated; however, some improvements
of the model are readily feasible, among which a
better description of the carbon dioxide effect
on the photosynthesis.

4, Conclusions

Although we have been able to compute optimal
greenhouse climate controls it is still
difficult to compare the results to other
control strategies. This 1s mainly due to the
following facts,

a) Heating does not occur since the temperature
requirements of the plant are badly
described by the model which causes heating
to have no assoclated income,

b) Humidity control was excluded from the
optimization but turns out to fundamentally
influence the control.

Furthermore we assumed the weather to be

completely known in advance, which is
unrealistic. Finally the results of course
depend on the cholce of the initial time, the

and the final

corresponding initial conditions,
explained this

time of the optimization. As
cholice is by no means obvious.

A number of things remain to be investigated. A

fundamental question remains how to actually
apply optimal control in practice given the
problems caused by the long term unpredictable
and fast varying weather conditions in
combination with the fast and slow system
dynamics. Simulation experiments may help to
answer this. Obviously humidity control should

be included in the future. The dynamics used to
describe the greenhouse-tomato <crop system
contalned several simplifications a number of
which are questionable and neea further

investigation. The optimal solutions have to be
confronted with other, possibly non-
deterministic, knowledge about the system (e.g.

grower’s knowledge and experience) to further
improve the model and the costfunctional.
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