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Abstract. In practice, the frequent, synchronous and periodic updating of con-
trols and observations is often undesirable or impossible. As opposed to conven-
tional digital control, in the case of asynchronous and aperiodic sampling, the
frequent, synchronous and periodic updating of controls and observations is no
longer assumed. In the case of asynchronous and aperiodic sampling, an arbitrary
number of control variables is updated, and an arbitrary number of outputs is
sampled at arbitrary time instants. This sampling scheme generalizes many deter-
ministic sampling schemes considered in the control literature. The derivation and
computation of the digital LQG regulator and tracker for time-varying systems in
the case of asynchronous and aperiodic sampling is presented. The digital LQG
regulator constitutes a truly implementable compensator for nonlinear systems hav-
ing to track reference state-trajectories. It explicitly accounts for the inter-sample
behavior since it is based on an integral cost functional. This also holds for the
digital LQG tracker which applies to a linear system tracking a reference state-
trajectory. The computation of the digital LQG regulator and tracker is considered
and illustrated with a numerical example.

Key Words—Asynchronous aperiodic sampling, multi-rate sampling, sampled-
data time-varying systems, digital LQG controllers.

1. Introduction

Most digital control system design procedures, put forward in the control lit-
erature, assume frequent, synchronous and periodic updating of controls and ob-
servations. In practice however, this is often undesirable or impossible. In the
process industry, the economy and in the area of environmental control, this is
due to different analyses and costs associated with measurements, different costs
associated with updating control variables, actuator constraints and the locally
distributed nature of the process. In the case of digital control of mechanical and
electrical systems, this is due to limited I/O capabilities, limited computing
power and limited computer memory of the digital controller.

Given these practical constraints, in general, the updating of an arbitrary
number of control variables, as well as the sampling of an arbitrary number of
outputs, may occur at arbitrary time instants. We will refer to this as asynchro-
nous and aperiodic sampling. Because of analyses that may be involved, we also
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consider the situation when observations, made at a certain time-instant, become
available only sometime later on. This sampling scheme, we believe, generalizes
many deterministic sampling schemes considered in the control literature. It, for
instance, generalizes conventional sampling, multi-rate sampling, non-synchro-
nous sampling and multiple-order sampling considered by Kalman and Bertram
(1959) in their theory of sampling systems. Especially multi-rate digital control
systems, characterized by multi-rate sampling, have received attention since
then. Most analyses however, is restricted to the control of continuous time-in-
variant linear systems (Colaneri et al. (1992) and references therein).

To the best knowledge of the authors, digital LQG control, in the general case
of asynchronous and aperiodic sampling and time-varying systems, has received
no attention so far. It is however, of great practical importance, for instance to
design and compute implementable digital compensators for asynchronous and
aperiodically sampled nonlinear systems tracking (optimal) reference state-trajec-
tories. Examples are a batch fermentation process and robot motion. The linear-
ized dynamics about the trajectory in these cases constitute a time-varying
system. Van Willigenburg (1995) treated the computation of digital optimal con-
trols and associated state-trajectories for deterministic nonlinear systems, in the
case of asynchronous and aperiodic sampling. Together with the results pre-
sented here, this allows for the design and computation of asynchronous and
aperiodically sampled digital optimal control systems (Athans, 1971; Van
Willigenburg, 1991).

In the case of aperiodic and synchronous sampling, where at arbitrary sam-
pling instants all controls and observations are updated simultaneously, we have
the digital LQG regulator (Halyo and Caglayan, 1976; De Koning, 1980; 1984) and
tracker (Van Willigenburg and De Koning, 1992) for time-varying systems.
Through a piecewise constant constraint on the control the digital nature of the
controller is explicitly taken into account and, through the use of an integral
cost functional, the inter-sample behavior is explicitly considered. Therefore a
small sampling time is not required. This relaxes the computational burden on
the computer and circumvents the demand to update controls and observations
frequently. To solve digital LQ and LQG problems, they are generally trans-
formed into unconstrained equivalent discrete-time problems (Levis et al., 1971;
Dorato and Levis, 1971; Halyo and Caglayan, 1976). Until recently, computation
of the equivalent discrete-time criterion matrices was only considered for time-
invariant problems (Van Loan, 1978). The extension of this computation to the
time-varying case is not straightforward. This was demonstrated by Van
Willigenburg (1991; 1993) who resolved this problem.

In this paper the derivation and computation of the digital LQG regulator
and tracker for time-varying systems in the general case of asynchronous and
aperiodic sampling is presented. The paper is organized as follows. In Sec. 2 we
present the digital LQG regulator and tracking problem, the first being a special
case of the latter. In Sec. 3 the digital LQG tracking problem is converted into an
unconstrained equivalent discrete-time problem. Then this discrete-time problem
formulation is modified to describe the partial update of the controls. One of the
characteristics of this modified problem formulation is that the equations obtain
time-varying dimensions. In Sec 4 the solution, which has the certainty equiva-
lence property, is presented. The feedback and feedforward, which can be
computed a priori, follow from the modified equivalent discrete-time problem
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formulation, through iteration of matrix difference equations having time-vary-
ing dimensions. Extensions and simplifications of the problem and its solution
are presented in Sec. 5. Section 6 presents a numerical example while Sec. 7 con-
cludes the paper.

2. Problem Formulation
Consider the stochastic continuous time-varying linear system,
()= At)x(t)+ B(HHu(t)+v(t), A(t)E A", B()E A", (la)
where {v(t)} is a continuous time zero-mean white noise process,
E{v(t)} =0, cov(v(t), v(s))=V(t)d,(t—s), V()e A" (1b)

In Eq. (1b), 6,(-) is the Dirac delta function. The a priori known initial state
statistics are

E{x(t, )= %(t,), cov(x(l,), x(t,) =G Ge& R, (1c)

where t,, denotes the first time instant at which some control variables are up-
dated. The non-updated control variables at f, are assumed to be deterministic
and known. This will be described later on.

To describe the asynchronous and aperiodic sampling, we define an a prior:
known set of control instants and an a priori known set of observation instants,
respectively:

T,={t,, ¢=01,2--,C=1, &, >t }, (1d)
T,={t,, =12 L >t} (le)

At each control instant £, , ¢=0,1,2,---,C—1 one, several or all m control
variables are updated while the others remain unchanged. The a priori known
sets U,, ¢=0,1,2,---,C—1 describe which control variables are updated at
each control instant. They contain the m, indices, 1 =< m, = m of updated con-
trol variables at ¢, ; i.e.,

card(U,)=m,, 1=m,=m

(1
i €U, ® u; isupdatedat ¢,,, i=1,2,---,m, c=0,1,---,C—1}( )

In accordance with (1f) ¢, is the final time involved in the digital LQG problem
which satisfies,

bue >ty - (1g)

After each control instant all control variables remain unchanged until the next
control instant through the use of zero-order hold circuits,

w(t)=u(t,), tE€[t,t,.), ¢=012--,C—1. (1h)
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At each observation instant ty, which may be equal to a control instant, one,
several or all p outputs of the system are sampled. The a priori known sets Y
describe which outputs are sampled at each observation instant. They contain
the p, indices, 1 = p, =< p, of the sampled outputs at ty; Le.,

card(Y) = p, 1=p =p
. 1i
ie)’]@yi’issampledatty;, i=12,-,p, =12 L (1)

In Eq. (11) »’ is given by the output equation,
y(t,)=C(t)x(t,)+w(t,), 1=1,2,-, L C(t)€R™, (1j)

where w’( ty[) is a discrete-time zero-mean white noise process,

E{w(t,)} =0, cov(w'(ty), w(t,))=W(t,)o } v

Wit,ye AP i=1,2, L, 1=1,2, L

In Eq. (1k) §;; is the Kronecker delta. To obtain a causal and on-line computable
control algorithm, we assume that the information available to compute the con-
trol updates at {, consists of all observations and controls preceding 1, . In this
case the time between £, and the latest observation or control instant preceding
t,, 1s available to compute the control update at f,. Given this scheme, taking
samples at or after the last control instant £, is useless. Information obtained
from measurements before the initial control instant #,, can be incorporated in
Eq. (1c). Therefore we assume

ty, € Lt tuey)s 1=1,2,-, L. (11)

It may happen because of the analyses involved (for instance, given certain
chemical or economical measurements), that past observations are not yet avail-
able at ¢, . This case will be treated separately in Sec. 5. Finally we assume that
x(t,,), {v(¢)} and {w’(ty[)} are independent.

The digital LQG regulator problem for the system (1) is to minimize the cost
function,

tu

J= E{xT(tuc)Hx(thj Q) x(t) + uT(t)R(t)u(t)dt}. (2)

[

The digital LQG tracking problem for the system (1) is to minimize the cost
function,

E{(x(tuc) = 2, (t, ) H (2 (ty) — %, (4,)

e
+J (2(t) =2, (1) QU(x (1) — x,(£)) + uT(L‘)R(t)u(f)dt}, (3a)

t

uo

where

x,(8), €[t ty] (3b)
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is the reference state-trajectory to be tracked. In Egs. (2) and (3a), @(¢), H and
R(t) are symmetric matrices that satisfy,

R(t)=0, Q(t)=0, H=0, R(t)EA™™, Q)€ A", HE A", (4)

From Van Willigenburg and De Koning (1992), observe that the assumption
R(t) = 0 is sufficient in general for the results to hold while R(¢) > 0 is strictly
sufficient. Since the digital LQG regulator problem is a special case of the digital
LQG tracking problem, i.e. the case where x,(¢) =0, from now on only the digi-
tal LQG tracking problem will be considered.

3. Equivalent Discrete-time Control Problem Formulation

The equivalent discrete-time system, which describes the state transitions of
the system (1) from each control instant to the next is represented by

xC+1=¢ExC+Eu£+va C=0,1,2,'“,C_1, (53.)

where the index ¢ refers to #, and v, is a discrete-time zero mean white noise
process; i.e.,

E{v.} =0,cov(v;,v,)=V,6,,1=0,1,2,---,C—1,c=0,1,2,---,C—1. (5b)

The equivalent discrete-time cost function, which describes the costs (3) as a
function of the state and control at the control instants, is represented by

c-1
J= E{ OxZQCxC +2¢"M,u, + ut R.u, — 2A.x, —ZTCuC}
o=
-1
+ E{xCHxe =207 (h) Hich+ 28+ 7, (6)
o=
The system and criterion matrices in Egs. (5), (6) can be computed numerically
from those in (la)—(1c) and (2) (Van Willigenburg and De Koning, 1992; Van
Willigenburg, 1993).

In the equivalent discrete-time tracking problem (5), (6) #, appears as the
control. From the Eq. (1f) observe that in general not all of the control variables
are updated at each control instant. The actual control at each control instant
consists of only the updated control variables. Therefore a problem formulation
is required in which only the updated control variables appear as the control.
This problem formulation is obtained in two steps. First we rearrange the con-
trol variables u. into u/, which separates into a first part %, containing the
updated control variables and a second part «°, containing the unchanged con-
trol variables,

u

u, = [u”o} (7a)
ut‘

For each control instant ¢,, ¢ =0,1, -, C — 1, this rearrangement is defined by

two one to one mappings, U, (-) and Uy ().

U i)=j, i€{l, 2, m}, jeU, ¢=012.-,C-1 (7b)
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indicates that the updated control variable «; corresponds to U, and

Up(i)=7, 1€4,2,m—-m}, jEMU, ¢=0,1,2,---,C—-1 (7c)
indicates that the unchanged control variable ug corresponds to #. . Here i and j
are indices of vector elements. The set U, defined by (1f) contains the m, indi-
ces of updated control variables at ¢, , and the set M\U, contains the indices of
the unchanged control variables at #, with

M={1,2,m}. (7d)

Given this rearrangement of #, into #/, we can reformulate the equivalent-dis-
crete time problem (5), (6). Equation (5) converts into

X1 =Qx.+Tu,+v,, ¢=0,1,2,---,C—1, (8a)
while Eq. (6) becomes

c-1
J= E{ 2aTQux, +2xI Miul + u" Riul — 24, x, — ZTC’uC’}
c=0

¢l
+ E{x¢ Hre — 2% (4, ) Hxc} + —05‘ +7, (8b)
with
r,=r, M,=M, =1, (8c)

where 7 and j are column indices related through the mappings (7b), (7c). Finally,
R., =R, (8d)

where the pair ¢, » and the pair j, s point to matrix elements and ¢ and j, like
and s, are related through the mappings (7b), (7¢).

From (8) we proceed to obtain the equivalent discrete-time problem formula-
tion which contains the actual control #%, given by (7a). Through augmentation
of the state x,, ¢ =0,1,---,C — 1, with the unchanged control variables #?, we
are able to describe their influence properly. The augmented discrete-time system
thus becomes

=il + Tl +0v¢, ¢=0,1,2,.-.,C—1, (9a)
where
[«
x%= u‘}, xte gntmomxd (9b)
L %c
i 2
<p“= ¢c Fc ‘DaE //B(n+m—mc+l)><(n+m—m5) (9C)
Clo P2} T ’
L ¢
i
ri=| ree pntm-mea)pom (9d)
IC ’ ]
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v, -
U‘Z— [[C], U?E(%(n-'—m m[,,])Xl. (96)
Since the controls uo are deterministic, v? is a discrete-time zero-mean white
¢ c
noise process characterized by

V. 0
00

i=0,1,2,---,C~-1, ¢=0,1,2,---,C-1. (9f)

E{vt} =0, cov(v?,v‘é)=[ }aﬁ=vas,-ce.%»<"+m~wx<n+mw,

r'! and I'? describe the influence of the updated control variables and the un-
changed control variables at #, respectively, and given the division (7a) of «/,
are obtained from the corresponding division of I', given by

r.=[r. r?, rlexs"m  riepimm, (9g)

The matrices, /> and IZ, are such that the unchanged control variables u? in
the augmented state x% are properly updated,

ILo=1, i U (i)=U,(j) else I, =0, IL€ A" ™™ (9h)

Cij

=1, if Uy (i)=Upy(j) else
; (91)

2 2 plm=m)X(m—m,)

Ic,_, =0, IR Menyximm
where the pair i, j, points to matrix elements, and the mappings U, (-), Uy (")
are given by (7b), (7c). Given the description (9a) for the initial state we obtain

x4 =[x2] (93)

where the unchanged control variables #{ at the initial control instant £, are
assumed to be deterministic and known. Together with (9a) and (9f) we obtain
for G°, the covariance of the initial augmented state,

=[G 0] gre e maenon, (9%)

Since the controls after the final time play no part in the problem for the final
state we obtain,

Xe=xc. (91)

Equation (9) describes a discrete-time system with a state x{ and a control u;
which have dimensions that vary with ¢. The time evolution of this system
matches that of the original equivalent discrete-time system (5) for correspond-
ing sequences of . and u/ related by (7).

Finally, the equivalent discrete-time cost function (8b)—(8d) has to be adjusted
in accordance with (9) so that it generates the same costs when the evolutions of
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(5) and (8a) coincide. Therefore the partitioning of the matrices R/, M/, and 7/,
given by (8¢), (8d), is introduced which corresponds to the partitioning (7a)

of u/,
Rl R?
Rg={ : } Ry € Rmxme

RZ RS , (10a)
R? = .%,mr ><(m—m£)y R? = :j/?(m~mc)><(m~mc)
M{=[M, M), Mier™™, M2e ™", (10b)
=[1 1], 1€A™ e pXmom) (10¢)
Given these partitionings, the cost function corresponding to (9) becomes
ol T T
J= E{ 2 x? Qx? + 2% MAu* + u’ ROu® — 2497 —ZT?u’;}
c=0
r c-1
+ E{x? Hx?—2x7(t, )Hx%} + Zogc +7,, (10d)
=
where
Q. M ) _ _
Qi‘l:l: . , Qae l,//?(n-%m m)X(n+m mr), (106)
Mm% R® ‘
Ml
Me=| | M€ R (10f)
R® = R, REE pmexme (10g)
At =[A. 7], AL g (10h)
tl=1l, 18 € R (101)

The discrete-time control problem (9), (10) again is equivalent with the original
digital LQG tracking problem (1), (3), (4). Now, in (9), (10), the actual control uk
appears as the control.

4. Solution to the Equivalent Discrete-time Control Problem

Inspection of the solution to the problem (5), (6) (Van Willigenburg and De
Koning, 1992) reveals that although the matrices appearing in (9), (10) have time-
varying dimensions, as opposed to those in (5), (6), the part of the solution based
on stochastic dynamic programming still holds. Therefore, if we have the mini-
mum variance estimator £7 of the augmented system state x¢ in (9) at each time
ty, ¢=0,1,2,--,C—1, where the available information consists of all obser-
vations and controls preceding t,, and the estimator has a conditional covari-
ance P¢ that is independent of previously applied controls, then the solution to
(9), (10} is given by (Van Willigenburg and De Koning, 1992)
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K. = (R +T% S,y Iy (re's, ;o2 + M%), ¢=0,1,2,--,C~1, (lla)

Kl =(R*+T%S,,roy'r*, £=0,1,2,.C—1, (11b)
K2 =(R+T%S, )", ¢c=0,1,2,--,C—1, (1llc)
u'=—K.i%+ KN, + K%1¢, c=0,1,2,---,C—1, (11d)

S, =QI+®L'S, 1@ — KI(R+ TS, 1 THK,,
Sc = H, c=0,1,2,---,C—1, (lle)

N, = (@ ~TEK) Newy = KI7l + 27,
NC:er(tuC)v C:0,1,2,"',C_1, (llf)

J = 8 Syx— 28 No + I (t,) Hx, (4,,.)
c-1
+ L[& —(KiNe) (288 + T8N = 18 Kiat] +r(S6")
o

c-1 c-1 :

+ L[ (VESa)+y,]+ uw(KI(RE+ TS TOKPL. (11g)
¢=! =

The first four terms on the right side of Eq. (11g) can be compared to the cost in

the deterministic, or LQ case, where we have complete state information and no

system noise. The fifth term on the right is due to uncertainty with respect to

the initial state while the sixth is due to disturbances acting on the system. The

last term is caused by uncertainty with respect to the state estimation.

The remaining problem is to find the linear minimum variance estimator £%
of the augmented system state x¢, and to see if it has a conditional covariance
P? independent of previously applied controls. Note that we have perfect state
information about the part «” of x%, given by (9b), because #? consists of previ-
ously applied controls. Therefore only %, is required.

Consider the Egs. (11)—(1k) and the following a priori known one to one map-

pings,

Yr,(l):]@y,(ty,):y;(ty,), Zzlvzyapl) ]E}/lr 121,2,,L (12)
The mappings Y, in Eq. (12) specify how the sampled elements of the full out-
put vector y’( tyl) are mapped on the actual output vector y(tyl). From (1i)—(1k)
and (12), we obtain the following actual output equations:

y(ty)=Clty ) x(ty )+ w(ty), =12, L, (13a)
where

Ci(ty)=Cj(ty), C(t,)€E R, (13b)

In Eq. (13b) 7 and j are row indices related through the mappings Y, , given by
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Eq. (12). Furthermore w(tyl) is a discrete-time zero-mean white noise process
characterized by

E{w(t,)} =0, cov(uw(t,), w(t,))=W(t,)&,
i1=1,2,---,L, 1=1,2,---, L. (13c)
In Eq. (13c) W(tyl) 1s given by
Wi (b)) =Wi(ty), Wit,) € A", (13d)
where i, 7, like J, s, point to matrix elements and 7 and j, like » and s, are related
through the mapping Y, , given by Eq. (12).
Consider the set 7, of all observation and control instants ordered by mag-
nitude, its elements being denoted by #;,

Tum =TuUTm={tky k=0,1,2,~'-,C+L—1—€|t}z+1>l‘k}. (14)

In Eq. (14) e is the number of control and observation instants that are equal.
Equations (1d)-(1h), (11) and (14) imply that

u(t)=u(tk)=uke.%’m, tE[tk,thrl), kelk: t,€T,,}. (15a)

The equivalent discrete-time system which describes the state transitions of the
system (1) from ¢, to ¢, is given by

X1 =Ouxp, + Loy +v,, kE{k €Tyt (15b)
where v, is a discrete-time zero mean white noise process characterized by
E{v,} =0, cov(y, vp) =V (tes1, b)0ix = ViOip,
LkElk:t,€T,,}, V,er"". (15¢)
The system matrices in Egs. (15b), (15¢) can be computed numerically from those
in (1a)-(1c) (Van Willigenburg, 1993). For each #, that is an observation instant,
we can rewrite the output equations (13),
v, =Gxytw, kelkt,el,), (16a)
where
yk=y(z‘k)=y(ty[)€//?”', kelk:t,eT,}, [=12,--,L, (16b)
G =C(h)=C(ty) € RPN kefk:t,€T,, [1=1,2,-- L, (16c)
wkzw(tk)=w(ty,)€;%’,”’, kel{kt,el,}, [=1,2,---,L. (16d)

According to (16d) and (13c), (13d), w, is a discrete-time zero-mean white noise
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process characterized by
E{wyy =0, cov(w;, wp) = Wi = W ()6 = W (L) (16¢)
. e
W(t,) € A0, kelhit, €Ty}, 1=1,2,-+ L

From (15), (16), and according to well known results from discrete-time Kalman
filtering (Lewis, 1986), the a priori linear minimum variance estimator at all con-
trol and observation instants £(t,)” = £5, k € {k: t;, € T} is given by

fpa1 = Qpfy + Thuy, beE{k: 6, € Tymt, (17a)
Pro = OP®,+V,, kE€lkitL €T} (17b)

If t, is not an observation instant only the time update (17a), (17b) of the dis-
crete-time Kalman filter is performed, and we have

f=45, kelkit € T,\T), (17¢)
Po=P;, ket €Tp\Th. (17d)

If ¢, is an observation instant, which may be equal to a control instant, the time
update (17a), (17b) is followed by a measurement update of the discrete-time
Kalman filter,

Ky = Py CL(CPiCh + W), kelk: €Ty}, (17e)
Po=(I-K)Py(I-K) + KWK, kelkitreT,}, (17f)
Xp = £ + Kp(y, = Cetp), kelkt,eT,t. (17g)

The recursions are initiated with
fg =X0, Py=6G. (17h)

Obviously from (14) and (1d), (le), with £, we have obtained £,, and its condi-
tional covariance P, is independent of previously applied controls. Finally con-
sider the conditional covariance P? of the minimum variance estimator £% of
the augmented state x%. From (9b) and the fact that we have perfect information
about the controls u?, we have

P? — [% 8], P? e %(n+m—m()><(n+m~m[) , (18)

and so indeed P? is independent of previously applied controls. This concludes
the derivation of the digital LQG tracker in the case of asynchronous and
aperiodic sampling. The digital LQG tracker is given by Egs. (11), (14)-(18).
Equations (15)—(18) are stated in terms of the conventional equivalent dis-
crete-time system (15b), (15¢) corresponding to the system (1), which describes
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the state transitions from each control and/or observation instant to the next.
The time-varying dimension of the output equation (16) does not affect the dis-
crete-time Kalman filter results. Because of the partial update of controls at the
control instants, Eq. (11) is stated in terms of the modified equivalent discrete-
time system (9) corresponding to (la)-(1h), and the modified equivalent dis-
crete-time cost-function (10), corresponding to (3). The modified equivalent
discrete-time system describes the state transitions from each control instant to
the next and has as controls only the updated control variables. It is obtained
through rearrangement of matrices and vectors which describe the conventional
equivalent discrete-time system (5). Likewise, the modified cost-function (10) is
obtained through rearrangement of matrices and vectors which describe the con-
ventional equivalent discrete-time cost-function (6). The rearrangements are dic-
tated by the mappings (7b), (7¢c).

5. Extension and Simplification of the Digital LQG Tracker

Using the result of Engwerda and Van Willigenburg (1992), we may extend
the system equation (la) to become

$(t)y=A)x )+ BHu(t)+d(t)+v(t), A(t) € A", B(t) € £™™ (19a)
and extend the cost functional (3) to become

E{(x(tuc) - xr(tuc))TH(x(tuC) - xr(tuc))

tu
n j (2(8) = 2, ()T QUNx (£) — x,(£)
tuo . (19b)

+ (u(t) = u, () R(¢)(u(t) — m(t))dt}

Q(t)=0,H=0,R(t)=0,Q(t) € A™" H € R™" R(t) € A™™

In Eq. (19a) d(t) is an a priori known deterministic exogenous input, and in Eq.
(19b) u,(t) an a priori known control reference. Both of them are often involved
in economic control policy problems. If the observation y(f,) becomes available
sometime after l,.1, say t;, then at t, we can only perform a time update which
we have to store. Next we have to store all consecutive measurements until #
and after ¢; rerun Eq. (17), where we start with the measurement update at £,
and finish at the earliest measurement or control instant after #;.

If the time necessary to compute the control updates at the control instants
t,, is negligible, we may consider the available information at £, to be all obser-
vations and controls up to and including t, . In this case all our results hold if
we replace the estimator £, with £, and the covariance P, with P, which are
also given by Eq. (17).

The augmentation of the state described by Eq. (9a) at the initial time ¢, is
unnecessary if all unchanged control variables at £, are zero; i.e. g = 0. In this
case in Eqs. (9) and (11) x§ reduces to xy, G° to G, and in Egs. (10) and (11) Q§
reduces to @y, M3 to M} and A& to A},
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6. A Numerical Example

The computation of the equivalent discrete-time system and criterion matri-
ces (5), (6) and (15b), (15¢) constitutes the main difficulty in computing the digi-
tal LQG tracker. Van Willigenburg (1991; 1993) presented a method to compute
these. The following numerical example is chosen to contain all key features of
the digital LQG tracker. Consider the digital LQG problem (1), (3), (4), where

_ | —2—3sin(0.57¢) 0
A(t)—[ 5 —4—5*cos(0.57rt)] (20a)
_[sin(3t) 1 }
B(t)_I: -1 cos(3t)) (20b)
_ 1.5+ cos(2rt) 0.2
Vi = 0'5{ 02 1.3+sin(7rt)]’ (20¢)
! 102 01
xO_H’ G_[O.l 0.3] (20d)
~ [2+sin(2t) 0 ]
Q(”{ 0 2+ sin(2t) ]’ (20¢)
_ 2+ cos(2t) 0
R(t)—O.l[ 0 2+COS(2tJ, (20f)
101 0
x,(t) = (sin(t) cos(t))", (20h)
Crlt ) = —sin(27rty[) 1 201)
(ty,) = -2 3cos(mty) ]’ (201
Wit )= O.7+0.5cos(7ttyl) 0.15 20
()= 015 1+05cos(4nt,) ]’ (20))
tey =00, t, =t =21. (20k)
The control updating is characterized by
00 05 08 15
1 2 1 1
M control = 1 1 2 1 (201)
2 2 1 2

Each column of the matrix My, refers to the control instant specified by the
first element, ie. to f,, ¢=0,1,2,---,C —1. The second element defines the
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number of updated control variables, i.e. m, in Eq. (1f). The remaining elements
define how u, is mapped on u/. They equal U, (i), 1 =1, 2, -+, m. and Uy (i),
1=1,2,---,m —m,, given by (7b), (7c) respectively. This for example implies
that at #,, = 0.8, only the second control variable is updated.

The sampling of the output is described by
2 05

9 14

M output —

0.
1
1 (20m)
2

=N NN O

0.
1
2
1

N =N

Each column of the matrix My, refers to the observation instant specified by
the first element, 1e. to f;, /=1,2,--, L. The second element specifies the
number of outputs p,, given by (11}, that are sampled. The first p, elements that
follow specify which outputs of the full output vector are sampled and the order
in which they appear in the actual output vector; i.e. they equal Y, (i), i =1,
2, p, given by Eq. (12). For example, from (le), (11), (13), (12), (13) and (201),
(205), (20m) for the actual output equation (13) at t, = 0.2 we obtain,

C(t,)=[-2 3cos(0.21)], (21a)
W(t,) =1+ 05%os(087). (21b)

The time step involved in the numerical integration of Egs. (5), (6) and (15b),
(15¢) (Van Willigenburg, 1991; 1993) was chosen to be 0.01 everywhere. We con-
fine ourselves to mentioning the minimum costs of the problem (1), (3), (20) com-
puted from the algorithm since it requires all computations within the algorithm
to be performed. The minimum is computed to be 3@##5. 5.2565

The first four terms on the right of Eq. (11g) were computed to be 3.3658.
They represent the cost of the corresponding digital LQ tracking problem. These
costs may be verified against an alternative computation which constitutes a
function minimization (Van Willigenburg, 1991; 1993). The minimum costs and
optimal control obtained from this alternative computation matched those com-
puted from our algorithm within 0.1[%]. This verifies the LQ part of our algo-
rithm.

7. Conclusions

In practice conventional sampling is often undesirable or impossible. The de-
velopment of digital control system design procedures for asynchronous and
aperiodically sampled continuous-time systems circumvents the requirement for
frequent, synchronous and periodic updating of controls and observations. It
therefore is of great practical importance. The derivation and computation of the
digital LQG tracker for time-varying systems was extended from the case of
synchronous sampling to the more practical case of asynchronous (and
aperiodic) sampling. In this case, the updating of an arbitrary number of control
variables and the sampling of an arbitrary number of outputs occurs at arbitrary
time instants. Because of analyses that may be involved, we also dealt with the
situation where some observations, made at a certain time-instant, become avail-
able only some time later on.
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To obtain the solution, the system state at each control instant was aug-
mented by the unchanged part of the control. As a result the equivalent discrete-
time system and criterion matrices had to be modified and obtained time-varying
dimensions. Despite these modifications the solution still is certainty equivalent.
The feedback, feedforward and the estimator gains can still be computed a
priori through recursion. The linear feedback of the estimated, augmented state
implies that the optimal control at each control instant is a linear function of the
estimated state and the unchanged part of the control.

As a special case of the digital LQG tracker, the digital LQG regulator, to-
gether with results presented by Van Willigenburg (1995), permits the design
and computation of digital optimal controllers for asynchronous and
aperiodically sampled nonlinear systems (Athans, 1971; Van Willigenburg, 1991).
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