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Abstract. In this paper it is shown that if costs are associated to sampling operations which are added
to a performance criterion, the minimization of this new performance criterion results in a controller
operated at an optimal sampling rate. This, under the assumptions that the system is periodically
sampled, the applied control is kept fixed between every two sampling instances and some technical
conditions are met. In case the considered planning horizon in the performance criterion is finite an
algorithm is devised which calculates in a finite number of steps the optimal sampling period. It is
shown that the technical conditions mentioned above are satisfied by the finite planning horizon time-
varying LQG tracking problem. Since stability is a major requirement in controller design we also
consider the case of an infinite planning horizon. This analysis is focused on the time-invariant digital
LQ tracking problem. Given some mild regularity conditions a numerical algorithm is presented that
approximates the optimal solution within any prespecified error norm. It is shown that also in this
case an optimal sampling-rate exists. The algorithm for determining the optimal sampling period if
the planning horizon is finite is illustrated in an economic example.

1. Introduction

Dealing with practical problems in engineering and economics the natural questions
arise how often the system should be sampled and how the performance is affected
if only sampled datasets are available.

Macro-economic systems, for example, evolve continuously in time while eco-
nomic data from the system are gathered only at certain sampling instants. Increas-
ing the sampling period of a macro-economic system brings on additional costs of
data gathering, whereas the additional information that can be extracted from this
data will, in general, decrease on an increasing sampling period (since e.g. the data
is corrupted by noise). Therefore, the problem arises to weigh out the advantage
of an increase in the performance of the system and the additional cost of data
gathering.

In this paper we present sufficient conditions for the existence of an optimal
sampling period for an economic system. We assume that the underlying economy is
described by a linear continuous-time system containing an exogenous component,
and that the policymakers want to minimize a social welfare function.
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There is an extensive ongoing literature dealing with various problems concern-
ing sampled data systems (see e.g. Astrom et al. (1990) and Engwerda et al. (1992)
for references). Main research performed in this area has been done in the field
of control engineering, in particular from a digital control point of view. In par-
ticular the so-called digital LQG tracking controllers have been studied. They are
characterised by sampled data, piecewise constant controls and a quadratic integral
costfunctional which includes a reference for the state only. However, the design
does not take into account the influence of an exogenous component, a reference
for the control and costs associated to sampling. Characteristics, which are typical
for example many economic and chemical systems.

In this paper the analysis of the finite planning horizon time-varying digital
LQG tracking problem and the infinite planning horizon time-invariant LQ tracking
problem and their numerical computation, are extended to deal with problems where
an exogenous component and a reference for the control are involved. The cost
associated to sampling operations are added to the quadratic performance index.
It is demonstrated that minimising this new performance index results in a digital
LQG (LQ, respectively) tracking controller operated at an optimal sampling-rate.

The outline of the paper is as follows. First, we consider the finite planning
horizon problem in a general setting. It is assumed that the goal is to choose the
sampling period such that the sum of sampling cost and social welfare cost is
minimized. It is shown, by making a reasonable choice for the sampling cost as
a function of the number of samples, that under some technical conditions on the
welfare function, also viewed as a function of the sampling period, there exists
a sampling period minimizing this sum. A numerical algorithm is given which
computes this optimal sampling period in a finite number of steps. Then, it is
shown that if the welfare function is given by a quadratic tracking criterion and
the underlying system is described by a linear time-varying differential equation
corrupted by white noise the above mentioned technical conditions are satisfied.
This is achieved by deriving, for an a priori specified sampling period, an explicit
formula for the minimal value of this social welfare function. This value can be split
into four terms. One term which can be compared to the costs of the corresponding
LQ problem, a second term that is caused by the initial state uncertainty, a third
term which is caused by disturbances acting on the system and a fourth term caused
by uncertainty of the state estimation. Ideally, it would be desirable to analyze this
minimal value as an explicit function of the sampling period and then investigate
the dependency of this value on the sampling period (i.e. evaluate the derivative).
However, this value is a highly nonlinear function of the sampling period which
has as a consequence that the resulting expression for the derivative requires more
computational effort than the actual calculation of the minimal value for a number
of appropriate sampling frequencies (see Powell (1967)). But, fortunately, it can be
easily verified from this value that the technical conditions mentioned above are
satisfied, which yields the above mentioned conclusion.
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Since robustness for unmodeled disturbances and staying close to prespecified
policy paths is a major requirement in economic controller design too (see e.g.
Pitchford et al. (1977), Preston et al. (1982) and Engwerda (1990)), we consider
in a seperate section the case where the social welfare function has an infinite
planning horizon. To simplify this analysis we restrict it to time-invariant digital
LQ tracking problems. Again, first, the existence of an optimal sampling period
in case costs associated to sampling operations are added to the welfare function
is treated in a general context. Technical conditions are presented again from
which one can conclude that this optimization problem has a solution. Then, these
results are used to derive an explicit expression for the minimal value of the LQ
performance criterion, given a fixed sampling period. This theoretical expression
for the minimal value is used to verify the above technical conditions and thus to
conclude the existence of an optimal sampling period for the problem.

To calculate this optimal sampling period one may expect that one has to cal-
culate the minimal welfare for a number of fixed sampling periods. Since exact
calculation of the minimal welfare is an, in general, impossible job we present in
a seperate section a numerical algorithm which computes (under some conditions)
this value within any prespecified error norm together with some numerical con-
siderations. Finally, we illustrate how the optimal sampling-rate can be computed
numerically for an economic control policy problem.

2. Optimal Sampling Rates

In this section we discuss the problem how to determine the optimal sampling rate
in a general finite planning horizon setting.

Assume that a government likes to minimize a social welfare function Jy which
is defined over a planning interval [0, ], and that it reconsiders its policy only
at discrete points z; in time based on new information that it receives at points
t; on the economy. Moreover, assume that the policy variables remain constant
in between every two successive timepoints z; and z;41. To avoid unnecessary
complications assume that the timepoints ¢; and z; coincide. A point t; will be
called a sampling point. Additionally assume that the time that elapses between
any two consecutive sampling points is constant, and that this sampling period
equals 7'. Finally, assume that ¢ ; is an integer multiple of this sampling period and
that for every fixed sampling period the minimum of the welfare function, viewed
as a function of the policy variables, exists and is denoted by J3;,. Now, one might
expect that the more frequent the economy is sampled, the smaller the welfare cost
will be. This, however, is not always the case as shows the following example:

Example 1:

Consider the scalar system: ¢ = z + u, and the corresponding social welfare
function: Jyy = {fo (u—1)2%dt + fl (u — 2)dt}. Then, it is clear that if the policy
variable u may be changed at the sampling points 0, (2/3) and (4/3), the minimal
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welfare cost Jy;, > 0, whereas if the system is only sampled twice (at the points 0
and 1) the minimal welfare costs are zero. m]

Since the set of admissible policies for a sampling period T contains the set
of admissible policies for a period T3, whenever 75 is an integer multiple of 7},
it is obvious that a relationship which does hold is that J3;,(T1) < J3;,(T5). This
implies in particular that

Lemma 2: - B
Assume that limy o J3, (1)) = Jo. Then, J;;,(T) > Jo for every admissible sam-
pling period T'.

Proof:

(by contradiction) Assume that there exists a sampling period 7p such that .J w(To) <
Jo. Then (see the above argument) also J33,(To/N) < J3 (To), VN =0,1,2,...
So, in particular we get Jo = limy .o J3y (To/N) < I3y (To) < Jo. O

In the sequel we make the assumption that Jo:= limg o J3;,(T') exists as a finite
number. '

As motivated in the introduction it seems reasonable to assume that the collec-
tion of information brings on costs with it. Again for simplicity reasons, we make
the assumption that these costs, denoted by Js, consist of fixed costs, J 7, and
variable costs which are the product of some fixed amount ¢ and the number of
samples. That is:

= t
Js(T) = J; +cx Tf' (1)

Obviously under the above assumptions the sum of the welfare cost and sam-
pling cost J*(T') = Jy, (T) + Js(T'), goes to infinity if the sampling period T' goes
to zero. Therefore a sampling period 7 bounded away from zero exists such that
the sum of the welfare and sampling cost J*(7™) is minimal, i.e. J*(T*) < J*(T')
for all admissible 7. This inequality together with equation (1) and lemma 1
gives rise to the inequality (¢ * ¢ /T™) < JNT)_;, - Jo, from which we obtain
T* > cxtg/(J(ty) — J; — Jo). This inequality forms the basis of the following
recursive algorithm that computes the optimal sampling rate 7™ together with the
minimum cost J*(7) in a finite number of steps.

Algorithm 3:
e initialization step.
T :=ty, J*:=Jy(T*) + Js(T*); Number of samples :=1.
¢ updating the sampling period.
Increase the number of samples by 1. Calculate the corresponding sampling
period (71":=(ts /number of samples)).
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e stopping rule. '
IfT < cxts/(J* — J; — Jo) then the algorithm stops: the optimal samplmg
period is 7™ and the corresponding minimal cost is J*.
¢ minimality test.
If JX(T) < J*(T*) then T*:=T, and J*(T*):=J(T).
Goto step 2 of the algorithm. a

In the next section we show that the above mentioned assumptions on the welfare
function are satisfied if we consider a time-varying quadratic welfare function
containing a reference trajectory for the control and the economy is described by
a time-varying linear differential equation containing an exogenous component.
Furthermore we present explicit formulas to calculate the optimal control policy
for the optimal sampling period.

3. The Optimally Sampled Time-Varying Digital LQG Tracker

First, we formulate and solve the digital LQG tracking problem for an arbitrarily
chosen admissible sampling period. Consider a system described by the following
linear, finite-dimensional differential equation:

2(t) = A(t)z(t) + B(t)u(t) + d(t) + v(t), 2

with Ez(to) = Z(tp), and cov(z(tp), z(to)) = G. Here z(t) is an n-dimensional
state vector, A(t) and B(t) are the system matrices, d(¢) is a deterministic exoge-
nous component and v(t) is a white noise process with, Ev(t) = 0, and cov(v(t),
v(s)) = V(t)ép(t—s), where dp(t — s) is the Dirac delta function. The covariance
matrices V' (t) and G are assumed to be positive semidefinite (> 0).

Now, assume that measurements on the system are made at the sampling points
t;,t=1,..., N as follows

y(tk) = C(tk):v(tk) + w(tk),k =0,1,...,N,

where w(ty) is a discrete time white noise process with E{w(tx)} = 0, and
E{w(tx)wT ()} = W(tx )bk, where 6 is the Kronecker delta. The objective is
to let the state variables track a prespecified trajectory z*(-) by using a piecewise
constant control path u( -) that does not diverge too much from a prespecified control
path »*(-). This idea of tracking can be formalized by considering a quadratic cost-
functional of the form:

Jw(u(-),CI:(to),to,tN)Z:E{( (tN) -z (tn)) TH( tN) —x (tN))}
+B{ ["(a) - ) Q)alt) - (1)
+(u(t) = w () R(@)(u(t) - w*(1)) }, 3)
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where z*(-) and u*(-) are references for the state and control, respectively, and
Q(t)>0,R(t)>0and H > 0.

The digital LQG problem consists of minimizing (3) subject to (2). It is well
known that digital LQG problems can be transformed into equivalent discrete-time
problems which consist of an equivalent discrete-time system and an equivalent
discrete-time costfunction (see e.g. Levis et al. (1971)). The equivalent discrete-
time system corresponding to (2) is given by

Tht1 = Prar + Trur + di + v 4)
e = Crr + wi,

where the index & refers to values at times t. Here ®;, = ® (141, tx), where ®(¢, s)
is the state transition matrix of system (2) from time s to time ¢; 'y = I'(¢x41, k),
where ['(¢,tr) = fttk O(s,tx)B(s)ds;dr, = d(tkyr,tx), where d(t,ty) = ffk
®(s,1;)d(s)ds; and the white noise vy, is characterised by Evy = 0, Evfv, =
Vi = V(tkg1, tr), where V(1) = [ ®(s, 1)V (s)®7 (s, 11)ds.

The equivalent discrete-time costfunction corresponding to (3) is given by

Jw(u(~),l'(t()),t(), tN,T) = E{(:EN - .Z‘}‘V)TH(l’N - .T}‘V)}
N-1
+ Z E{zlQrar + 22 Mywy, + uf Ryup + 225 qp + 208 ug)
k=0
+fi + 2k, (5)

where R = [*' R(t) + TT(t,t)Q(O)I(t, tx)dt; Qx = [+ ®T(t,44)Q(1)®
(tte)dt; M = [ T (¢, 6)Q(O(t te)dtsre = [ TT (8, 44)Q(0)d(t, ty)
—a*(t) — R(t)u*(t)dt;, g = “*’ <I>T(t t)Q(1)(d(t, tk —z*(t ))dt fr = tk+‘
tr(V(t tr)Q(1))dt; and 2, = ft“‘ *(t) — d(t, )T Q(t)(z*(t) — d( t,tk)
u* (t) (t)u*(t)dt. Note that, since tx4; —tx = T, all these matrice's and variables
depend on the sampling period 7'. For notational simplicity this dependency is
omitted.

So, solving the digital LQG tracking problem (2,3) is equivalent to solving the
discrete-time problem (4, 5). The solution to this problem is summarized in the
next theorem.

Theorem 4:
The control sequence minimizing (5) subject to (4) is given by

up = —Gr.NTk — Gk N, (6)
where

Gk,N3=(Rk + F{]{k_HyNFk)_I(Fflfk.*_]yj\f@k + ]V[E) @)
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9k N =(Ri + TE K NTe) V(T K ndk — TE byt v + 7). (8
and K n and hj n are given by the recursions

Kin = Qk + ®F Kip nOy
~(®F K1 NIk + M) (Ri + TF Kppr nTx) ™!
X(If Kiepr n®x + M),
A,N,N = H, )]

hin o= (B = ThGieN) (hipi N — Kipindi) + GEyri — e, (10)
hN,N = Hx*(tn).

Moreover, the minimum cost over the time interval [t1, ¢ ] equals:

iy (testn, T):=a ] Ky nig — 28 by + 250 Hay,
N-—1
+ 3 {(Kipinds = higin) " (Ri+ TT Ky NT0) 7' To(0T
1=k

X (hiy1,n = Kiy1 nd;) = 2r;)
=2d{ hipi v +df Kipindi

—rT (R + TT Koy 8T 7'+ 21)
N-1

+tr (KN Pr) + Z {tr(ViKiy1N) + fi}
i=k

N-1
+ ) tr(Gi(Ri + T{ Kiy NT) G P,). (11)
1=k
Inequations (6, 11) Z¢, Pk, k = 0,1,..., N — 1 are generated by the well known
Kalman one step ahead predictor for the discrete-time system (4) given by,

Epyr = (Pr — LiCr)ak + Liyk + Truk + di, 20 = Zo,

where L. = @kPkCg(CkPkCg+Wk)_l,Pk+1 = (Qk—Lka)Pk(Qk—Lka)T—{-
LiWi LT + Vi with Py = G, and W, = W(ty).

Proof:

The proof follows from results presented by Engwerda and Van Willigenburg in
(1992), who consider the corresponding LQ problem, and results presented by Van
Willigenburg and De Koning in (1992), who consider the LQG problem without
an exogenous component and a reference for the control. a

Taking a closer look at the cost function (11) shows that in this equation the
first four terms can be compared to the costs of the corresponding LQ problem;
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the fifth term is caused by the initial state uncertainty; the sixth term is caused by
disturbances acting on the system; and the last is caused by uncertainty of the state
estimation. Furthermore, it is easily seen that J*(T") is bounded for every admissible
sampling period chosen in the interval (0, ¢y — to] and that limr | J3;,(T) exists.
So, we can apply algorithm 3 to find the optimal sampling period.

Corollary 5:

If the welfare cost are given by (3) and sampling cost by (1), then there exists
an optimal sampling period for system (2). This period can be calculated using
algorithm 3. Furthermore, the control minimizing the welfare cost (3) w.r.t. system
(2) and the corresponding welfare cost can, for any admissible sampling period, be
calculated from theorem 4. a

We conclude this section by noting that the numerical computation of the
solution presented in theorem 4 can be performed using the results presented by
Van Willigenburg in (1992).

4. The Infinite Planning Horizon Case

In addition to optimality usually robust performance with respect to unmodeled
disturbances is desired. It is well known that if one considers a quadratic per-
formance criterion over an infinite planning horizon and a system described by
a linear differential equation like (2) controllers are obtained which, under some
weak additional conditions, stabilize the closed-loop of the system. Therefore, in
this section we consider the existence question of an optimal sampling period in
case the considered social welfare function is defined over an infinite planning
horizon [to, o). To be more specific, we consider the existence of an optimal sam-
pling period for system (2) in case the welfare function is given by (3), with the
planning horizon t; extended to infinity, and the sampling cost given by (1). To
simplify the analysis throughout this section, we will assume all matrices occurring
in (2) to be time-invariant, the system is not to be corrupted by noise and full state
observations (i.e. C' = I). So, the system under consideration is

#(t) = Az(t) + Bu(t) + d(t); y(tx) = 2(tx) (12)

In principle now any sampling period between 0 and oo is a candidate for being
the optimal sampling period. On the other hand, if J};, (T') is well defined for every
finite positive sampling period T', in general one may expect that limg_. o, J33,(T') =
00. Making these last assumptions we have the following general observation.

Theorem 6:
Let J*(T') = Jyy (T)+Js(T'), where Jg is given by (1) and J3;,(T') is an arbitrarily
continuous welfare function defined on (0, 00) for which limr o J3i,(T') exists
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and limy_,o Jyy(T) = oc. Then, there exists an optimal sampling period T,
minimizing J*.

Proof:

Due to our assumptions on Jg and Jjy, itis easily seen that both lim7 | J*(T') = oo
and limy_,., J*(T') = oo. Using the continuity of J*(T') elementary analysis
shows the existence of an optimal sampling period. a

So the problem is to find conditions on the system and social welfare function
such that the conditions in theorem 6 are satisfied. To that end we first present
conditions guaranteeing that the optimization problem

minimize lim Jw(u(-), z(to), to, tn, T') w.rt. (12), (13)

tny—00

under the constraint that the closed-loop system is stabilized, has a proper solution
for every chosen sampling period 7. In fact two kind of problems can occur. First
of all, the reference paths for the control and policy variables must be such that
for any sampling period T the solution has a finite welfare function value. It is
clear that to satisfy this condition necessarily there must exist a control sequence
u(+) such that the difference between the actual and desired state variables, z — z*,
converges to zero if time goes to infinity. If the sampling period approaches zero
it seems reasonable (compare Engwerda (1990, theorem 6)) to require that the
desired state variables satisfy a differential equation which corresponds with the
system (12). On the other hand, if the sampling period differs from zero, then
the desired control variables should ultimately become periodically constant with
a period which equals the sampling period. Since this property should hold for
any sampling period this implies that the desired control variables must ultimately
converge. Based on these considerations we make the following assumption:

T7(t) = Az™(t) + Bu™(t) + d(t) + v(t); 2" (to) = z(to) (14)

where both uy(¢):=u*(t) — u* and v(t) converge exponentially fast to zero. (Here
u™ 18 a constant vector).

The second problem, already mentioned by Kalman et al. in (1963) (see also
Levis et al. (1971)), is that although the continuous time system (12) may be
controllable, in general the equivalent discrete-time system will not have this
property. This has immediate consequences in case one considers infinite planning
horizon problems, since this loss of controllability may cause the problem to have
no proper solution. So, we have to deal with this problem too. Now, in general
we have a rough idea about the magnitude of the optimal sampling period T™.
Therefore throughout this section we assume that 7 € [0, Ty, for some known
upperbound 77;. Conditions that guarantee the stabilizability of the sampled system
forany T’ € [0, TY] are as follows.
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Lemma 7:

Let (A, B) be stabilizable.

Then (®(T),I'(T)) is stabilizable for all T' € [0, Tt/] if for all eigenvalues A, . €
o(A)NCy, A — p # (271/6),V|0) < Ty. Here Cy:={z € C| Re z > 0}.

Proof:

Let T € (0, Ty] be any sampling period. Then A is an eigenvalue of A if and only
if e*T is an eigenvalue of ®(7T'). Consequently, if the real part of X is smaller than
zero then |e*?| < 1. That is, e*7 is a stable eigenvalue of ®(T'). Next consider
the case that A € o(A) N C,. Then, by assumption, A will be controllable, i.e.
rank[A — A B] = n. We will show that rank[®(7") — e*T I T(T)] = n too. That
is, e*T is a controllable eigenvalue of the sampled system.

To that end we first note that e*7 # e*7 forall z € o(A)/{\}.So, ¢(z):=(e*T —
e’ /(2 — X) # 0Vz € a(A)/{)\} and, moreover, lim,_ ) ¢'(z) # 0.

From both these observations we conclude that e*7 —e*T = (z —\)g(z), where
g(z) # 0Vz € o(A). So, using the spectral mapping theorem, we have that rank
[®(T) - eMIT(T)] = rank[(A — AI)g(A)T(T)], where g(A) is invertible. Using
standard arguments the result follows immediately. a

To answer the existence question of an optimal sampling period for the infinite
planning horizon LQ problem we first consider the solution to the equivalent
discrete-time LQ optimization problem for a fixed sampling period. It is well
known that (see e.g. Kwakernaak et al. (1972)) if (®, I) is stabilizable, then both
K:=lmpy_ o K n and, consequently, G:=limy_.o, G N exist, where K y and
G, are as in theorem 4. Furthermore the spectral radius of the matrix & — I'G,
denoted by (, is smaller than one, and K can be found as the unique positive
definite solution satisfying the algebraic Riccati equation:

K=Q+3"K®—-(M+TTK®)'(R+TTKT)"\(M+TTK®), (ARE)
(15)

where the time-invariant matrices () and Ry, are denoted by () and R, respectively.
With this result one can prove analogous to corollary 2 in Engwerda (1990) that:

Theorem 8:
Let(®,T') be stabilizable and d, gx, r be such that forall & > 0 hg:=limy _ o hi N
exists. Then, the optimal control minimizing lim , .. Jw (u(+), z(to), to, tn, T)
w.r.t. (12), is given by:
up = —(R+TTKT)y " WM + TTK®)z;,

—~(R+TTKT)Y " Y (M + TTKdy — TT hyyy + 71), (16)
where K satisfies (ARFE). Moreover, this controller stabilizes the closed-loop
system. The minimum welfare cost equals

Ty (to, T):=ad Kzo — 228 ho + $Z§Hm;N
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o0
+ > {(Kdi = hig1)T(R+ TTKT)'T(I7T (hiyy — Kdi) - 2r))
1=k
—2dFhip + dTKd; — T (R+ TTKT) 'r + 2} -

Sufficient conditions for the existence of hy are (see Engwerda (1990, theorem
3)) that the growth rates of the deterministic variables dj, g; and r; are smaller
than (1/¢), i.e. [|dis1ll > vIIdkll; llge+1ll > vllgkll and [|741]] > ylIrcl} for some
v <(1/¢Q).

In practice only an approximate solution can be calculated. This brings on some
specific approximation problems which are discussed in the next section.

Theorem 9:

Let (A, B)be stabilizableand A — p # (274 /0)V|0| < T A, i € 0(A)NC,. Then,
if 2*(-) satisfies (14), J7y, (1) is a continuous function on (0, Ty7] and limg o J3; (T')
exists.

Proof:
First note that due to our assumptions, for any sampling period 0 < T < Ty, the
sampled system will be stabilizable on (0, Ty/] (see lemma 7).

Now, define the output error and control error as e(t):=z(t) — z*(t) and
Au(t):=u(t) — u”, respectively. Then the optimization problem (12) can be rewrit-
ten as
it

N-1 .
minNli_xpoo{e(tN)THe(tN)4r > [/ eI ()Qe(t) + AuT (t)Ru(t)
k=0 L1

—2AuT(t) Ruy(t) + ug(t)Rud(t)}dt] }
subject to

é(t) = Ae(t) + BAu(t) + 9(t) — Bug(t);e(to) = 0.

Since e(t) = ®(t,tk)e(tr) + L(t,te)Au(ty) + d(t,1x), where d(t,1;):= .
®(s,1x)(0(s) — Bug(s))ds the problem is equivalent to:

N-1
min N]im {e(tN)THe(tN) + Z (e} Qex + 2] M Ay,
e k=0

—i—Au{RAuk + Zez(jk + 2FkTAuk - Ek}

subject to

ex+1 = Peg + DAuy + dy,



118 J. ENGWERDA AND G. VAN WILLIGENBURG

where di:=d(ter1, th), = [ TT (8, 1)Qd(t, 1r) — 2R(t)ug(t)dt; g = [+

ik 17

&7 (t,t1)Qd(t, t)dt; and 2 = [ (dT(t,1)Qd(t, tx) + ul (t) Ruq(t)dt.
Obviously, all conditions of theorem 8 are satisfied, so that the minimal cost for

this problem equals:
Jw(to,T)

o0

= S (K ds = b)) (R + TTRT)Y (T (hiyy — Kd) — 25,
1=k
_ zd_iThi_H + J;II{(L - fZT(R + FTIXT)_IE‘ + z}

To prove the continuity of Jyj,(7"), note that K x(7') is a uniform continuous
function, for every N, which is bounded independently of N. Consequently K (T')
and, thus, G are bounded continuous functions too. Using (10) it can be shown that
h; satisfies (see Engwerda (1990, theorem 3)):

he(T) = isi(T), where
1=k
si(T) == ({(® -TG)' Y GTr; — G — (& - TG)TKd;})(T)

Now, s;(7') is a continuous function in 7', which converges exponentially fast
to zero if ¢ tends to infinity (the spectral radius of (® — I'G) is smaller than
one, and 7;,¢; and d; converge exponentially fast to zero). So, hx(T) is also a
bounded continuous function. Furthermore, it is easily seen that also h;. converges
exponentially fast to zero if k tends to infinity. The same arguments as we used to
show that hx(T') is a bounded continuous function, show that .J3;,(7') is a bounded
continuous function on (0, 777}, which completes the proof. a

Corollary 10:

Assume that the welfare cost is given by limy_. J(u(-), 2(tp), to,tn,T) and
sampling cost by (1). Then, under the conditions of theorem 9, there exists an
optimal sampling period for the control problem. a

5. Computational Remarks

Based on slight modification of results presented by Van Willigenburg (1992) we
are able to numerically compute the solution (6) to the LQG-problem (2, 3) if the
planning horizon is finite.

If the planning horizon is extended to infinity the computation of (10) in principle
requires an infinite number of computations which in turn require an infinite number
of data concerning the exogenous variables of the system and reference variables in
the cost functional. Therefore an algorithm is needed to approximate this solution.
Loosely speaking, we will show that under the growth rate conditions mentioned
after theorem 8 the outcome of the backward recursion (10), i.e. hi N, is hardly
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influenced by hy ;v when k' — k is large. Or, in other words, that the outcome
of the backward recursion is hardly influenced by previous far distant outcomes
of the recursion. Therefore, taking a sufficiently large horizon the recursion (10)
will approximate the solution Ay arbitrarily close. More formal, the result reads as
follows.

Lemma 11:
Let ¢ be an arbitrary positive integer. Consider

N—-1
Y= 3 (6 -TG)T {~(¢ - TG) Kdj + Gw; — v;} a7

i=l

Then, under the assumptions of theorem 4, for any € > 0 there exists an N such
that ||h; — hf\' || < €. Moreover, N can be calculated from either (ii) or (iii) in the
appendix. a

Since the proof of this lemma is rather technical it is deferred to the appendix
of this paper.

This lemma gives rise to the following algorithm for calculating an approximate
optimal control in theorem 8. Starting point for the algorithm are the cost criterion
(13) and system (12), and a fixed sampling period T'. The algorithm assumes that
all reference and exogenous variable paths are known.

Algorithm 12:
la) Check whether ) > O and R > 0.
b) Check whether (A, B) is stabilizable
2a) Calculate the equivalent discrete time system matrices ¢, I', and d
b) the weight matrices Q, M and R, and the
¢) vectors gk, Tk, and z in the equivalent cost criterion (5).
3a) Calculate the positive definite solution K of the algebraic Riccati equation
(ARE)
b) Calculate the spectral radius ¢ of the closed-loop matrix ¢ — I'G.
4a) Calculate the maximal growth rate v of the variables d, gx and ry.
b) Check whether vy < 1/¢.
5a) Choose an approximation error ¢ for h;, i.e. h{v will be constructed such that
[hi = NI < €.
b) Choose an N that satisfies inequality (ii) of the appendix.
¢) Calculate

N v
hY:=3 (6 - TG {GTr; — ¢ — (-~ TG) Kdj}. (18)
J=1
6a) Implement the optimal control (16), with h; replaced by izfv
b) increment ¢ by 1, and return to 5). a
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Note that in step 2b) the vectors vg, wy and zj only need to be calculated up
to time /V, under the assumption that the growth rate assumption is satisfied. (One
may expect that in practice the verification of this last condition will not be too
difficult.) Consequently in actual situations the order of computations is: 1), 2a),
3), 4), 5a), 5b), 2b), 5c¢), 6), 5a), 5b), 2b), 6) etc.

Another point worth mentioning is that if matrix B is full column rank, ¢ — I'G/
is invertible (see Engwerda (1990, theorem 5)). This allows recursive calculation
of hiyy as (¢ — I'G)"T{h; + v; — Gw;} + d;. This formula might be useful in
implementing the algorithm. However, one has to be very careful in using this
scheme, since all the eigenvalues of (¢ — I'G)~7T are outside the unit circle. So any
error in h; is exponentially forwarded to h; ;.

Finally we note that to find the optimal sampling period in the infinite planning
horizon case is much more involved than in the finite planning horizon case. Two
remarks which may be helpful are: 1) one may proceed similarly as in algorithm 3
to find a lower-bound for this period, and 2) the solution K of the algebraic Riccati
equation is a monotonically increasing function of the sampling period T' (See
Levis et al. (1971)).

6. An Economic Example

To illustrate some of our results, we consider the following deterministic macro
economic multiplier-accelerator model (Turnovsky (1972)),

Y =4C+1+G+ D

I =aC —il

C = §Y -0C),

where Y denotes national income, C' consumption, [ investment, G government
expenditure and D autonomous expenditure. This model can be written as:

(5)-(287 ) (5)+ (2 ) (4)

Choosing o = 0.0789, 6 = 0.6068 + 0.2 sin(27t),y = 0.4171,7 = 0.2782 and
D(t) = —100e%92¢, this equation constitutes a deterministic linear time-varying
system with state vector z(t):=(C I)?, control vector u(t):=G and exogenous
vector d(t):=(8 (ad/i))T D. We assume that only consumption, i.e. the first state
variable, is measured at the sampling times. To describe the uncertainty of the
economic model and the measurements we use the system description (2) with,

A(t) = ( Al e ) . B(t) = (3) :

<$> biv(y) = (255 0.(())9)‘

Il

d(t)

1
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350\ ., (300 0
z(to) <70>’G“< 0 300) and

Clty) = (1 0),k=0,1,...,N = 1;W(t) =3.0,k=0,1,...,N — 1.

Given this system, the economic control policy is to minimise the welfare cost
(3) with ty = 5;Q(t) = ( 0965 0‘?2-) :R(t) = 0.001;u*(t) = 300 + 0.1¢ and
x*(t) generated similar to x(t), but with ¢ replaced by 0.6, u(t) given by u*(t)
and z*(t9) = (100 400)7. Note that the system generating the reference state
trajectory is time-invariant and that it may be regarded as the “average” of the
original system, i.e. when the periodicity of ¢ is disregarded. The construction of
this economic control policy is partially based on work presented by Turnovsky
(1972) and Kendrick (1981). It only serves to demonstrate the possible application
of our results in economic control policy problems. We assume the economy to be
periodically sampledi.e. tx4 — txy =17,k =0,1,..., N — 1, and that the cost for
gathering one measurement are 1.0 (so Js = (5/T)).

Figure 1 shows the total costs as a function of the sampling period T for this
example. From this figure it is clear that algorithm 3 yields an optimal sampling
period of T = 1/3. The corresponding minimum total costs are 79.7974.

160 r : v ,
1501
140
130}
120}

110

Costs [billion US Dollars)

70 1 1 A
0 0.5 1 1.5 2 2.5

Sampling period [years}

Fig. 1. Total costs versus the sampling period in case of digital LQG control.
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7. Conclusions

In this paper we considered the question whether there exists an optimal sampling
rate for systems that are periodically sampled. Optimal, in the sense that this
sampling rate is such that the sum of a performance measure and the cost of data
gathering is minimized. Under the basic assumption that the policy variables do
not change in between every two successive sampling instances, it is shown that
the answer to this question is affirmative under some technical conditions.

In case the performance is considered over a finite planning horizon, we present-
ed an algorithm which calculates the optimal sampling rate in a finite number of
steps. It is shown that if the system is described by a linear time-varying differential
equation, containing an exogenous component, which is corrupted by noise and
the performance criterion is a quadratic tracking equation containing a reference
signal for as well the state as the policy variables, the above mentioned technical
conditions are satisfied. So, under these conditions an optimal sampling rate exists
and can be computed in a finite number of steps. Explicit formulas are given to
accomplish this computation.

Since for robustness reasons stabilizing controllers are desired the existence
question of an optimal sampling rate was also raised in an infinite planning horizon
setting. Again, some technical conditions were presented under which an optimal
sampling rate exists. The analysis for LQG systems was extended from a finite to
an infinite planning horizon while some simplifying assumptions were made with
respect to the system and performance criterion. Conditions on the system and target
variables guaranteeing that the minimal value of the performance criterion remains
bounded for any sampling rate have been presented. Provided these conditions are
satisfied an optimal sampling rate exists.

We showed that there exists a compact interval where the optimal sampling
period is situated. By calculating the minimal performance for different sampling
periods in this interval one may get an idea of the location of the optimal sampling
period. A problem with this approach is the possible existence of local minima. To
carry out this idea, one has to calculate (for fixed different sampling periods) the
minimal performance criterion. Since the considered planning horizon is infinite,
this is not a trivial job. Some numerical remarks were made which may help to
accomplish this task.

From the analysis of the finite planning horizon LQG and infinite planning
horizon LQ case it is clear that the optimal sampling period depends on the initial
state of the system and the prespecified output and control paths. So a basic problem,
left for future research, is to investigate how robust the design is for changes in the
initial state and reference paths. Another open problem is to what extent our basic
assumption that the policy variables remain fixed in between every two successive
sampling instances influences the optimal sampling rate. One might expect that if
the optimal sampling rate is relatively small this assumption does not affect the
outcome too much.
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Appendix

Proof of lemma 11:
In this appendix we show how large the planning horizon N in

N-1
W= 3(@ - TG {~(® - TG)T K dy, + Guy, — vk} (19)
k=1

must be chosen to have an estimate for h; that satisfies the inequality
IR = hill2 < e{ll(@ = TG K |lal|dill2 + |Gllallwill2 + [[vill2} =: ed. (20)

for a prespecified estimation error .

To that end, we make a Jordan-decomposition of matrix ® - I'G : & — I'G =:
D + J, where D is a diagonal matrix, J is a nilpotent matrix and DJ = JD.
Moreover, we denote —(® — FG)Tde + Gwy — vi by dy. Then,

5 (z (*) Dk-uf) i

Under the assumption that NV is larger than the dimension n of matrix ® — I'G,
this sum equals

ki = BN |2 =

21
2

i (D+J)kdy| =

k=N

2

o0

2

k=N

/_\

n

Z 2” D" JJJ) dy

(22)
2

( )Dk 1T dy 2) (23)
( )Dk'Jdk 2) (24)
Z( )otn ||d||2) 2s)
i ( ) (p7)F]1dll2 (26)
k=N

v i (%) lldll2, (27)
. !

N
M8

>
Il
Z

/AN
K

§

>
Il
Z

N
M8

>
Il
Z

l
M:

0

.
Il

il

J

where ()\9) denotes the j-th derivative w.r.t. py, v is the growth rate of the deter-
ministic variables and p is the absolute largest entry of matrix D.
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Using Leibniz’s rule, we can write this sum as:

iw‘.ii (1) o n®- ()" 28)

S | v 1 —py
:g)vf%}é(i)k!(N,:rl)(j—k)z(—Tlﬂj_—k||J||2 29)
- Znong(jv,;“) L. 30)

pr Rl
=ZO(1 f,,v)é(N,j Dol on
:g%(] jpv)jBM(]z;_l;)zj;in) (N + 1)!|d]|2 (32)

where B, (z, y) is the Béta-function [{” t*~1(1 — ¢)¥=!dt. So, if N* is such that

N B, (N*4+1—-3,j+1 .
T (1 _7[)7) m( (Nj_ j)!fj!f LISV D<e (i) (33)

i=0

then N~ is a choice for the planning horizon that yields an approximation izf-v " of
h; that satisfies equation (i).

To avoid cumbersome calculation we finally note that whenever N* satisfies
the following inequality, then (ii) is satisfied:

- ()

1__ )

oy(T=p)

1
e>(py)VH (N ) (iii) (34)
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