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Abstract

The finite-horizon optimal compensation problem is considered in the case of linear time-varying discrete-time systems with
deterministic and white stochastic parameters and quadratic criteria. The dimensions of the compensator are a priori fixed and may be
time varying. Also the dimensions of the system may be time varying. Strengthened discrete-time optimal projection equations
(SDOPE) are developed which, within the class of minimal compensators, are equivalent to the first-order necessary optimality
conditions. Based on the SDOPE and their associated boundary conditions, two numerical algorithms are presented to solve the two
point boundary value problem. One is a homotopy algorithm while the second iterates the SDOPE repeatedly forward and backward
in time. The latter algorithm is much more efficient and constitutes a generalization of the single iteration of the control and
estimation Riccati equations, associated with the full-order problem for systems with deterministic parameters. The algorithms are
illustrated with a numerical example. The case of systems with deterministic parameters will be treated as a special case of systems
with white parameters. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are mainly two reasons why discrete-time sys-
tems with white parameters are important. Firstly, these
systems arise naturally in the field of digital control
where some of the parameters may be white such as
the sampling period (De Koning, 1980), the controller
parameters (Wingerden and De Koning, 1984), or the
parameters of the plant (Wagenaar and De Koning, 1989).
In all these cases it is possible to convert such a digital
control system to an equivalent discrete-time system with
white parameters (De Koning, 1980; Tiedeman and De
Koning, 1984). Also inherent discrete-time systems, such
as economic systems, may have white parameters.
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Secondly, the parameters of an inherent or equivalent
discrete-time system may be assumed to be white for the
purpose of a robust control system design. It is well
known that the standard LQG design does not lead in
general to a robust control system with respect to
parameter deviations (Doyle, 1978). The use of white
parameters to model the system uncertainty offers ways
to design robust control systems (Banning and De
Koning, 1995; Bernstein, 1987; Bernstein and Greeley,
1986). The advantage of a model with white parameters is
that it fits naturally in the LQ design context. Therefore,
this approach allows for non-conservative robust con-
trol system design with respect to structured parameter
variations.

Among others time-varying discrete-time LQG prob-
lems are obtained in the case of digital LQG compensa-
tion of non-linear continuous-time systems tracking
(optimal) trajectories, or as a result of aperiodic and/or
asynchronous sampling (Athans, 1971; Van Willigenburg
and De Koning, 1995, Van Willigenburg, 1995).
The optimal full-order compensator for systems with
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deterministic parameters is a time-varying compensator
(Kwakernaak, 1972). The same holds for systems with
white parameters as demonstrated in this paper. Due to
its time-varying nature the full-order compensator may
occupy a serious amount of computer memory. From
this point of view, compared to the time-invariant case,
there is an even stronger need for controller reduction.

In the case of time-invariant continuous-time and dis-
crete-time systems with deterministic parameters, neces-
sary conditions for the solution of the optimal infinite-
horizon reduced-order LQG compensation problem,
have been presented in terms of four coupled matrix
equations, known as the optimal projection equations
(Hyland and Bernstein, 1984; Bernstein et al., 1986) since
an oblique projection plays a central role. It was only
after the presentation of these equations that a good
insight in the reduced-order LQG problem was obtained.
This e.g. allowed to trace relations with standard (full-
order) LQG theory and provided a very attractive alter-
native to compute numerical solutions (Bernstein and
Greeley, 1986; Richter, 1987; Richter and Collins, 1989;
De Koning and De Waard, 1991). Recently, strengthened
discrete-time optimal projection equations (SDOPE)
have been presented in the steady-state case (Van
Willigenburg and De Koning, 1997). Within the class of
minimal stabilizing compensators the SDOPE were
proved to be equivalent to first-order necessary optimal-
ity conditions as opposed to the conventional optimal
projection equations, which were proved to be weaker
and having solutions which do not correspond to opti-
mal reduced-order compensators. Based on the SDOPE
two numerical algorithms were proposed, a homotopy
algorithm and an iterative algorithm. The latter algo-
rithm constitutes a generalization of the algorithm that
solves the control and estimation Riccati equations of
full-order steady-state LQG control through iteration.
Finally, these results were carried over to systems with
white parameters (De Koning and Van Willigenburg,
1997) using results from De Koning (1992) which deals
with full-order compensation.

While reduced-order steady-state LQG control re-
ceived much attention the authors are aware of only
three results that address the LQG problem in the case of
time-varying systems and a finite horizon (Haddad and
Tadmor, 1993; Van Willigenburg and De Koning, 1998;
1997b). Haddad and Tadmor (1993) treated the continu-
ous-time case. They generalized the optimal projection
equations to describe necessary conditions for the solu-
tion in the finite horizon time-varying case. New features
of the equations are the time-varying nature and the
dependence on boundary conditions that play no role in
the steady-state case. However, the boundary conditions
of the four coupled matrix differential equations could
not be specified in terms of the parameters making up the
LQG problem. This prevents the development of numer-
ical algorithms. In the discrete-time case, Van Willigen-

burg and De Koning (1998) solved this problem and
showed that it relates to the change of the dimension
of a minimal compensator at the boundaries. This
paper generalizes the approach for discrete-time systems
with -deterministic parameters to systems with white
parameters.

Although Van Willigenburg and De Koning (1998)
presented the SDOPE and associated boundary condi-
tions in terms of the LQG problem parameters, no
methods to solve the resulting two point boundary-value
problem (TPBVP) were provided. Of course standard
methods to solve the TPBVP may be used. On the other
hand, it seems advantageous to exploit the relations
between the SDOPE and the control and estimation
Riccati equations of finite-horizon full-order LQG con-
trol, similar to De Koning and Van Willigenburg (1997)
and Van Willigenburg and De Koning (1997). This is the
approach adopted in this paper. Based on the SDOPE,
two numerical algorithms are proposed, a homo-
topy algorithm and an iterative algorithm which
constitutes a generalization of the single iteration of the
control and estimation Riccati equations of full-order
LQG control of systems with deterministic parameters.
The latter algorithm is much more efficient, and using
different initializations, is capable of finding multiple
solutions, if they exist. The algorithms are illustrated with
a numerical example. The example demonstrates the
possible local optimality of an optimal reduced-order
LQG compensator and the capability of the iterative
algorithm to generate multiple solutions, if they exist.

Observe that the results in Van Willigenburg and De
Koning (1998), and the results presented here, allow for
time-varying dimensions of the discrete-time system.
Time-varying dimensions of discrete-time systems arise
in digital control problems, if the sampling is performed
in an asynchronous manner (Van Willigenburg and De
Koning, 1995; Van Willigenburg 1997).

2. The optimal reduced-order compensation problem

Consider the time-varying discrete-time system
xi+1=(Dixi+Fiui+vi, iZO,l,...,N—l, (].a)
yi:Cixi+Wi7 izoyla'~~>N, (lb)

where x; € R" is the state, u; € R™ is the control, y; € R
is the observation. The processes {®;}, {I;}, {C;} are
sequences of independent random matrices with appro-
priate dimensions and time-varying statistics and {v;},
{w;} are sequences of independent stochastic vectors with
time-varying statistics. Observe that ®; may not be
square. The initial condition x, is stochastic with
mean X, and covariance X and is independent of
{®,T;,Cy,v;,w;}. Moreover T; and C; are independent
and {®;}, {I;}, {C;} are independent of v;,w;,i # j and
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uncorrelated with v;, w;. The processes {v;}, {w;} are
zero-mean with covariance’s V; >0 and W;>0 and
cross covariance V;. As a controller the following time-
varying dynamic compensator is chosen:

Riv1 =FX + Ky, i=0,1,...,N—1, (2a)

ui=—L,-)€i, i=0,15~~~,N9 (Zb)

where £; € R" is the compensator state. The dimension
n¢ of the compensator state may be time-varying and
n<m, i=0,1,..,N. FeR™" K,eR" and
L, e R™*" are real matrices. Note that F; may not be
square. The initial condition X, € R"™ is deterministic.
Compensator (2) is denoted by (£o, F¥, K", L) where

FN={F,i=0,1,...,N — 1},
KN ={K;i=01,..,N—1},
LN ={L,i=0,1,...,N —1}.

Since the input-output behavior of the compensator is
independent of the internal realization only minimal com-
pensators need to be considered. Minimal compensators
require less storage and computation and furthermore
prevent the use of the Moore-Penrose Pseudo inverse,
which complicates the optimal projection approach (Van
Willigenburg and De Koning, 1998). Therefore, from
now on, only minimal compensators will be considered.
Finite-horizon minimal reduced-order compensators for
the system (1), in general, have time-varying dimensions
which satisfy (Van Willigenburg and De Koning, 1998),

Xo#0=nj=1, Xo=0=n5=0, ny =0, (3a)

£
nf —m;<nf,; <nf+m;, i=01,..,N—-1L  (3b)

Eq. (3a) states that, at the boundaries, the dimension of
the compensator state drops to zero and one. Eq. (3b)
states that the change of the dimension of the compen-
sator state, from each discrete time instant to the next, is
bounded from above and below. Given the restriction to
minimal compensators, the designer must specify pre-
scribed compensator dimensions which satisfy Eq. (3)
and n¢ < n;. If the prescribed compensator dimensions
do not satisfy Eq. (3) and nf < n;, they can be reduced to
dimensions which do satisfy Eq. (3) and n{ < n;, without
loss of performance (Van Willigenburg and De Koning,
1998). The algorithms, presented in Section 4, have the
property that, even if the designer does not specify pre-
scribed dimensions which satisfy Eq. (3), a minimal opti-
mal reduced-order compensator is obtained with dimen-
sions which do satisfy Eq. (3).

Problem formulation

Given the system (1) the optimal reduced-order com-
pensation problem is to find a minimal compensator (2),

with prescribed dimensions nf which satisfy Eq. (3) and
n$ < n;, that minimizes the criterion

In(%o, FV, KN, LY)

N-1
= E{ngxlv + Z (xFQix; + 2x{ Qu; + ”?Riui)},
i=0
(4a)
Qi = 0’ Ri > 09 Qi - QERi_lQIiT = 09 Z = 07 (4b)

and to find the minimum value of Jy.

3. The strengthened discrete-time optimal projection
equations (SDOPE)

As in Bernstein et al. (1986), Bernstein and Haddad
(1987), Bernstein and Hyland (1988), using the Lagrange
multiplier technique first-order necessary optimality con-
ditions can be obtained for the solution of the optimal
reduced-order compensation problem. As in De Koning
and Van Willigenburg (1997), Van Willigenburg and De
Koning (1998) the SDOPE and their associated bound-
ary conditions are obtained through rearrangement of
these first-order necessary optimality conditions.

Let A* denote the group inverse of the matrix
A e RP*P. This inverse is unique and given by (Rao and
Mitra, 1971),

A* = A(A>T A, )

where + denotes the Moore—Penrose inverse. To state
the main theorem the following lemma is needed.

Lemma 1 (Bernstein and Hyland, 1988). Suppose P,
SeR™" are symmetric nonnegative definite and
rank(PS) = n°. Then there exist G,H e R"*" and M €
R"™>" such that

PS = G"MH, (6a)
12 = ¢ = PS(PS)*, (6b)
where 1 is defined by

1=G"H. (6¢)

From (6b) 7 is an oblique projection (idempotent matrix)
uniquely determined by P and S. G, M, H are unique up
to a change of basis in R". The triple (G, M, H) is called
a projective factorization of PS. Furthermore,

(PS)* = G"™M 'H, (6d)
HG" = I, (6e)
rank(G) = rank(M) = rank(H) = rank(t) = n°. (6f)
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PS in Lemma 1 is diagonalizable and has n. non-zero
eigenvalues which are positive (Bernstein and Hyland,
1988). Hence G, M, H and t can be computed from an
eigenvalue decomposition of PS as follows:

a~a - T h\ a v’} )
PS=UsshssUid, NAps= L3300 |
o O
G=[A" 0]U, (7b)
M= AN A, (70)
H = [A_l 0] UPS > (7d)
I, 0]
= Ups |: 0 OJ Uﬁs?l > (7e)

where the columns of Ups are eigenvectors of PS and the
elements of the diagonal matrix Apg are the eigenvalues
of PS and the n, non-zero diagonal elements of Aps
appear first. A € R"*"™ in Eqs. (7b)~(7d) is an arbitrary
non-singular matrix. This reflects the uniqueness of
G, M, H up to a change of basis in R™.

Let an overbar denote expectation and introduce the
following notation:

&)i=®i_(§i, ﬁzlﬂi;lﬂi, Ci=C—-GC (®)
and also
Kp,p,=(®RCT + BACT + V1)
x(CRCT + CRCT + Wy ™!
i=01,...,N—1, (9a)

Ls. 5., =(TfSi L+ 78 T, + R) !

X (T84 1®; + LISy @ + Q)
i=0,1,..,N—1, (9b)
= ((_I)i - ELS,-H,S‘,.H)pi(&)i - ELSH,,S,H)T
+ Kp,p(CRCT + CECT + W)KF, 5,
i=012...,N—1, (9c)

i1 = (@ — Kp,5,C)'Si41(®; — Kp, 5,C)

+ LE;H,S (OfSie G+ 78 T+ R)Ls,, s

i+1 i+1°

i=0,1,2,...,N—1, (9d)

T = Ini — Ti

i=0,1,...,N. (9¢)

Now the main theorem can be stated.

Theorem 1. The compensator (£,, F~,K", L") satisfies
the first-order necessary optimality conditions for optimal
reduced-order compensation and is minimal if and only zf
there exist nonnegative symmetric n; x n; matrices P, P,

i=0,1,2,....,N and S;,S;, i=0,1,2, ... ,N, such that
Jor some projective factorizations (G;, M, H;) of PS,,
i=0,1,...,N.

F,=H;  [®;, — Kp 5C; — l:iLsi+1,Si+‘]GiT g RMrixnt,

i=0,1,...,N—1, (10a)
Ki=H;Kp peR"™ ™ i=0,1,..,N—1, (10b)
Li=Ls, 5, Gl eR"™™ i=01,..,N—1, (10c)
%o = HoXo € R"™, (10d)

and such that P, S;, P, S;, 7;,i=0,1, ..., N, satisfy

P = (DiPi(DiT — KP;,P,.(CiPiCiT + C.BCT + VVi)K;;,P,.

X T w5 s o & oy 3
+ ELS;HS,«HE‘L;H,S,-H?? + Vi+ e Vit
i=0,1,...,N—1, P, =X, (10e)

Si=m_l‘§i+1 N

i+1

x(TTSiaTy + T18 ks + R)Ls,,, 8

i+1

+ {5, D — ®S;, lKPi,P;Ci — C?KPi,Pi§i+1®i

+ CiTK;,.,P,SH lKPi,P;Ci + Qi+ LA T,

i=0,1,....,.N—1, Sy=2, (10f)
Piy=3 P+ Wil ), i=01...,N—1,
Py = %05, (10g)
Sigg =50IWA, +¥P21), i=01,.. ,N—1,
Sy =0, (10h)
rank(P) = rank(S;) = rank(B.S;) =
i=0,1,...,N, (10i)
= PS,(BS)*, i=0,1,...,N. (10j)

The costs of the compensator (%o, F¥, KN, LN) are given by
Iy =JIn, =Jn,» (11a)
JN1 = tl‘[Z(PN + pN)]

N—-1

+ Z l'V[Q P + (Ql + LT+1 S,+1R‘LS.‘+1»SAI+1

i=0

—2QiLs,,, s, )P1, (11b)
Iy, = tr[X(So + So) + XoXoSo]

N-1
+ > tr[ViSiv1 + (Vi + Kp s WiK}, 5,

i=0

- 2Vi/K;i,P;)§i+1]- (11¢)
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Proof. The proof follows from the proofs of comparable
theorems in Bernstein and Hyland (1988), De Koning
and Van Willigenburg (1997) and Van Willigenburg and
De Koning (1998). [

Eqgs. (10e)—(10j) constitute the strengthened discrete-
time optimal projection equations. The difference with
the conventional discrete-time optimal projection equa-
tions relates to the following equalities which must hold if
the first-order necessary conditions are to be satisfied;

) 1 1T 1T

Pii=14¥ =¥itis1 =541 Vititq, (12a)
& _ Tw2 _ \p2 _ T2

Sia‘ =¥ =¥Yiau=1u¥Ynn (12b)

Now Egs. (10g) and (10h) ensure that Eqgs. (12a) and (12b)
are satisfied (Van Willigenburg and De Koning 1998).
The final expressions in Eqgs. (12a) and (12b), instead of
Egs. (10g) and (10h), determine the conventional dis-
crete-time optimal projection equations (De Koning and
De Waard, 1991; Haddad and Moser, 1994). They how-
ever do not ensure the second and third equality in
Egs. (12a) and (12b) to hold (Van Willigenburg and De
Koning, 1998).

From Egs. (3a) and (10g) observe that Py, Sy have
dimension zero, so formally they vanish. As a result
Fy_1, Ky_1 vanish, which reflects the fact that they do
not influence the performance because Xy does not influ-
ence the performance. Egs. (10e)—(10j) constitute a two-
point boundary value problem (TPBVP). Eq. (10) can be
viewed as a generalization of the strengthened discrete-
time optimal projection equations in the steady-state
case (Van Willigenburg and De Koning, 1997) since these
are obtained after removal of the time indices and bound-
ary conditions. If the system is deterministic,

(I)i:(T)is ®; =0, 1ﬂi=1:i, ﬁ'=0>

(12¢)
Ci = C_i, 6i - 0
From (12c) the result for systems with deterministic
parameters is obtained if in Egs. (9) and (10) the overbars
are deleted everywhere and also all terms involving o, T,
or C;. As opposed to the steady-state case, the conven-
tional finite-horizon full-order LQG compensator for
discrete-time systems with constant dimensions and de-
terministic parameters, in general, is not a special case of
Theorem 1. This is because the conventional full-order
LQG compensator, in general, is not minimal because its
dimensions do not satisfy Eq. (3) (Van Willigenburg and

De Koning, 1998).

4. Numerical algorithms

Homotopy degree theory turned out to be the key
element in proving the uniqueness of the solution to the

full-order infinite-horizon time-invariant LQG compen-
sation problem for systems with white parameters (De
Koning, 1992). Using the uniqueness of the solution
a highly efficient numerical algorithm to compute the
optimal full-order compensator, based on iteration of the
full-order version of the SDOPE, was derived in De
Koning (1992). The algorithm was proved to converge.

In an attempt to prove the uniqueness of the solution
to the reduced-order compensation problem the same
approach has been applied to steady-state reduced-order
LQG control of time-invariant systems with determinis-
tic parameters (De Koning and De Waard, 1991; Richter,
1987; Richter and Collins, 1989). Convex analysis of
static output feedback problems (Geromel et al., 1996)
and numerical examples in De Koning and Van Willi-
genburg (1997), Van Willigenburg and De Koning (1997)
strongly indicate that these attempts, so far, have failed.
Generally speaking it seems that in the case of controller
and also model reduction, no general uniqueness results
can be obtained if quadratic criteria are involved.

Although uniqueness cannot be guaranteed
a homotopy and iterative algorithm, based on the
SDOPE, can still be derived in the steady-state reduced-
order case for both systems with deterministic and white
stochastic parameters. The algorithms however, can no
longer be guaranteed to converge and generate the global
minimum. Despite this result the algorithms turn out to
work very well in practice (De Koning and Van Willigen-
burg, 1997; Van Willigenburg and De Koning, 1997).
Here, in a similar manner, a homotopy and iterative
algorithm will be derived for the finite-horizon time-
varying case. The iterative algorithm is much more effi-
cient, and, using different initializations, is capable of
generating multiple solutions, if they exist.

Egs. (10e)—(10g) are coupled forward and backward
recursions. The coupling is due to (a) the stochastic
nature of the system parameters and (b) order reduction.
A homotopy constitutes a parameterized family of prob-
lems where the parameter varies from zero to one. For
the parameter value 0 an “easy” problem with a known
solution is obtained. In our case this is the full-order
problem for systems with deterministic parameters, for
which Egs. (10e) and (10f) are not coupled. For the param-
eter value 1 the original problem is obtained. By slowly
changing the parameter from O to 1 the easy problem is
deformed into the original problem. In our case by slowly
changing the parameter from 0 to 1 both the coupling
due to the stochastic nature of the system parameters and
the coupling due to order reduction are gradually intro-
duced. Following the solution path as the parameter
changes from zero to one, from the solution of the easy
problem a solution of the original problem is obtained. If
the number of solutions along the solution path remains
constant the uniqueness of the solution to the “easy”
problem implies the uniqueness of the solution to the
original problem. Homotopy degree theory states under
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which conditions the number of solutions remains con-
stant (Loyd, 1978; Richter and De Carlo, 1983).

To construct the homotopy, let $"" denote the space
of real n; x n; symmetric matrices. Define

={X!,i=0,1,...,N}, XleS§"m, (13a)
XY ={X},i=0,1,...,N}, X?eS§"m (13b)
XY ={X},i=01,...,N}, X}esmn (13¢c)
XY={Xt,i=0,1,...,N}, X}tesmm, (13d)
and
Y{={Y!,i=0,1,...,N}, Ylesmm, (14a)
Y={Y?,i=0,1,...,N}, YZesm™m, (14b)
YY={Y?,i=0,1,...,N}, YPesmm (14c)
Yi={Yi=0,1,..,N}, Y}esmm (14d)

To gradually introduce the coupling due to order reduc-
tion define

Le 0
= Uy
= Uxixi [ 0 (- ﬁ)l,.,._n;] e

pe[0,1], (15a)

n{' = min(nf, rank(X3X?)) (15b)

Tlii = In,» - T?a

where the columns of Uy:ys, as in Eq. (7), are eigenvectors
of X7 X obtained from an eigenvalue decomposition of
X} X} arranged such that the largest positive eigenvalues
appear first on the diagonal of the diagonal matrix Ays Sxt.

Eq. (15b) ensures that tf is still properly computed

ie. according to Eq.(10j), if, for some reason,
rank(X;}X?) < n. Therefore, even if the designer does
not specify prescribed compensator dimensions which
satisfy Eq. (3), an optimal reduced-order compensator
with dimensions which do satisfy Eq. (3) is still obtained.
These and other consequences of Eq. (15b) are thorough-
ly discussed in Van Willigenburg and De Koning (1998).
To gradually introduce the coupling due to the stochastic
nature of the system parameters, as in De Koning (1992),
define

O} = @, + 9P, I’ =T, +I,

ye[0,1]. (16)
Note that y may be conceived as an uncertainty measure.

If y =0 the system has deterministic parameters. The
homotopy parameter will be denoted by o and three

different parameterizations will be considered,

B=y=a  ael0,1], (17a)
B=oy=0  ael[0,1], (17b)
B=0,y=0a  aec[0,1]. (17¢)

Observe from Egs.(15), (16) that o in (17a) gradually
introduces both the coupling due to order reduction and
the coupling due to the stochastic nature of the system
parameters. In Eq. (17b) only the coupling due to order
reduction is gradually introduced. Finally, in Eq. (17¢c),
only the coupling due to the stochastic nature of the
system parameters is gradually introduced. Therefore,
Eq. (17a) amounts to the original problem, Eq. (17b) to
the reduced-order problem for systems with deterministic
parameters and Eq. (17¢) to the full-order problem for
systems with white stochastic parameters. Consider the
following parameterized nonlinear transformation, based
on the SDOPE:

(Ylf’ Y N ) - ( IlvaXIZV’XgT’Xg)’ ae [071]

defined by,
Yl +1

= (D}‘Y’f(l)f _

+9°0, Y70 — y?®, Y Ly: g TT

Ky p(CIYICT + 2 CY3CT + W)K: 2

_ ylﬁLI X Y3(I)T

i+1

+ 1 FLY Y?L{ﬁuz\’?ﬂf? + Vl

i+1 Y:‘+l
B wih
T T+ YiThita,
i=01..,N—1, Yy=X, (18a)
2 T T
Yi = (I)Y Y""lq)y - LYiz+l'Y?+l

x(T7' Y27 + 92TTY4 T+ R, )Ly, vt

it1

+ 7700 YE @ — 2D Y, 1Ky, x:C;

- VZG?K}(},X?Y?H&)I'

+92CTKy oV G+ Qi+ 1R oh,
i=0,1,...,N—1, Yi=2Z, (18b)

YH-I_‘Z(T +1T1+\Plrl+1 i:0>17"'>N—1>

Y3 = Xo%o, (18c¢)
—_(Tﬁ‘P 1+lP,+1T) i=0,1,...,N—1,
Y4=0, (18d)
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where

Wi = (@ - DLy, x, ) Y (@ — Tilyz, ye,)"
+ Ky 3 (CIYECT + 92 CYICT + W)KT: v,

i=012,..,N—1, (19a)
\P1+1 —((D Kx X3C )T Yz+1((Di_KX,.‘,X?C_i)
+LY+, v, (I7 Y:+1

+ '))ZFTY 1r + R)Ly

i+1s Y+1’

i=0,1,2,...,N —1. (19b)

Call (xV, XY, x¥, X¥) nonnegative if X!, X7, X},
X#>0, i=0,1,2,...,N. Denote the parameterized
equation (YV, Y, YY, YY) =R,(YY, Y5, Y5, YY) by
H (Y“, oc) = 0, where Y* denotes a nonnegative solution of
xy, NoxXY) = R,xY, ¥ X%). The function
H (Y"‘ oc) is called a homotopy From Eqs (15) (16) and
(17a)for o = 1 (XY, X5, X5, X¥) = R (X7, N.xh
is equivalent to Egs. (10e)~(10j) if nf ¢ =nf and X,1 = P,
X?=S;, X?=P, and X4 S:. From Eqs (15) (16) and
(17a)foroc—0(XN,X ¥ XY = R(xY, X5, x7)
are the equations associated with the “easy” problem, ie.
the full-order problem for systems with deterministic
parameters. In that case, Eqs. (18a) and (18b) are un-
coupled and have a unique solution (Kwakernaak, 1972).
Therefore Y° is unique.

Observe from Egs. (15), (18) and (19) that to compute
R,, first Egs. (18b) and (18d) have to be iterated back-
ward in time and then Egs. (182) and (18c) forward in
time. Therefore repeated applrcatron of ‘.Ra, denoted
by (X2, X%, x¥, xV) = Ry, X3, x¥°, XY'), where
k is the number of repetitions, is equ1va1ent to repeated
forward and backward iteration of the SDOPE, using
partly values obtained in previous iterations, because the
forward and backward recursions (9) and (10) are
coupled through Kp, 5, Ls,,, s,,, and ;. In the full-order
deterministic parameter case, ie. if o =0, Egs. (18a)
and (18b) constitute the uncoupled estrmatron and con-
trol Riccati equations. Then, (X ¥OxXY O xY, xY) =
XY, x¥, XV, XY) k > 2, because the solution is ob-
tained after one backward and one forward iteration
of Egs. (18b) and (18a). The second iteration is needed
to fix Egs. (18¢c) and (18d). So in this case convergence
is obtained after two iterations. Similar to the homo-
topy H(Y*? ) the solution method based on repeated
application of R,, until convergence is obtained, may
be viewed as a generalization of the single iteration of
the control and estimation Riccati equations of full-
order LQG control for systems with deterministic para-
meters. Summarizing, repeated application of R, results
in the following homotopy algorithm, where O,
and I, denote the n;xn; zero and identity matrix
respectively,

Algorithm 1

Initialization:
Xll = ®n,~: X12 = G)n,-a X? :In,»a X:‘ = Inia
i=01,...,N
o =0, Aa =1/N, N > 1 and integer.
compute Y% = lim, , RE(XY, X5, X¥, XJ) through
iteration
Loop:
o=+ Ax

determine, through iteration, whether
Y® = lim,_, ., RE(Y*~4%) exists
stop when o = 1.

Because in the reduced-order case the compensation
problem may not have a unique solution, and so the
number of solutions along the homotopy path may
change the convergence of Algorithm 1 cannot be
guaranteed. Also if the algorithm converges it cannot be
guaranteed to converge to the global minimum. Similar
arguments apply to the next algorithm which repeatedly
iterates the SDOPE forward and backward in time and
which is more efficient than algorithm 1, because it does
not involve the homotopy parameter.

Algorithm 2
Initialization:
- ®n > XZ ®n ) X3
i=01,..,N

1 4 2
An > X An >

with AL, A2 > 0, symmetric, random, and with rank n;.

Computation:
Determine, through iteration, whether Y = lim,_, , Rk
xy, x5, X¥, X¥) exists.

Theorem 2. If Algorithm 1 or 2 converges to Y'>0it
generates a minimal compensator (FN,KN, LM, gwen by
Eqgs. (9) and (10) when P;, S;, P, S; arereplaced by Y}, Y7,
Y3, Y}, respectively. This compensator is a local or global
minimum of the optimal reduced-order compensation prob-
lem with prescribed compensator dimensions equal to
rank(Y3,YH = n§ < nf.

Proof. From the definition of R,, if the algorithms con-
verge to Y! >0, the corresponding minimal compen-
sator is given by Eqs (9) and (10) when P;, S;, P, S,
are replaced by Y}, Y7, Y7, Y?, respectively. From
Theorem 1 this compensator satisfies the first-order
necessary optimality conditions when the prescribed
compensator dimensions equal rank(Y?Y?)=nf <n§
Because both Algorithms 1 and 2 are generalizations of
the algorithm that solves the two Riccati equations of
full-order LQG control for systems with deterministic
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parameters, they converge to local (global) minima, not
to local (global) maxima, which also satisfy the first-order
necessary optimality conditions. []

The numerical example in Section 5 and the numerical
examples and arguments in De Koning and Van
Willigenburg (1997), Van Willigenburg and De Koning
(1997) seem to indicate that Algorithms 1 and 2 have the
following two important properties. Firstly n{’ = n{ un-
less a minimal (locally) optimal compensator with dimen-
sions n; does not exist. Secondly, if the algorithms con-
verge, then Y! > 0.

5. Numerical issues and example

In the transformation R, terms like ®’AT” and
@' AC? for some matrix 4 occur. They may be written as
st '[(@"®T7)st(4)] and st~ 'H(CT® D) st(A)], re-
spectively, where st denotes the stack"ch'e?étor and ® the
Kronecker product (Bellman, 1970). Furthermore
RITT=0®T + y2® ® I'. In view of this it is conve-
nient to specify the needed statistics of the parameters by
@, I}, Ci, &, ® (T)i, (T)i LTI ®I (T)i ® 61‘ and C; ® C;.
In Eq. (15b), rank(X? X}) is computed as the number of
eigenvalues of X7?X{ with a magnitude larger than

107° times the largest. Furthermore, in Eq. (10),
G; = [A O0]Uxx; and H;=[A"' 0]Ugks where
AeR""is an arbltrary invertible matrix. In the algo-
rithms A4 is the identity matrix. Since Uxix: may be
ill- COndlthHCd 1nstead Ugxst 107121, 1s computed The
iteration (XY, XY, X¥ XNh) R (X XY XY
is numerically stable in general. In crltlcal 81tuat10ns the
symmetry of X! and X? must be enforced further by
performing, X} = (X1+X1) X? = 3(X? + X?') at the
end of each iteration. In the case of numerically difficult
examples, where the magnitude of the state of the closed
loop system becomes very large, the numerical stability is
greatly enhanced if we apply the following computatlon
at the end of each iteration, X} = (1 — a) X!* + ax 1"
and similarly for X7, X2, X} where k is the iteration
index and a € [0, 1] the coefficient which determines this
numerical damping. In the following example, the com-
putations mentioned above were applied with a = 0.25.
Based on arguments in De Koning (1992), convergence is
assumed when the relative difference between successive
values of trace(S, + Py) falls repeatedly below a certain
tolerance, in our case 10~ % The random nonnegative
symmetric matrices with prescribed rank, by which
Algorithm 2 is initialized, are obtained as follows. Using
arandom number generator a random real square matrix
A with the appropriate dimensions is generated. From
a singular value decomposition 4 = UAVT is obtained.
The smallest singular values on the diagonal of the
diagonal matrix A are set to zero such that the result-

ing matrix A’ has the prescribed rank. Then A, i.e. the
random nonnegative symmetric matrix with prescribed
rank, is calculated as 4’ = UA'UT.

The following example exhibits most key-features of
the problem formulation, i.e. the system is time-varying,
®;, I; and ®@;, C; are dependent, cross products Q} are
present in the criterion, the additive system and measure-
ment noise have non-zero cross-covariance matrices V/,
and the prescribed dimension of the compensator state
varies over time. To limit space only the outcome of the
two expressions for the minimum costs (11b) and (11c),
Le. Jy,, Jy, are presented, since they require the computa-
tion of all the other matrices which appear in the
SDOPE.

Example. Consider the finite-horizon discrete-time
LQG compensation problem (1), (2) and (4) with

— 0.9653 0.7942:'

@, = (1 + 0.2 sin(i)) [ —07942 — 09653 |

C;=[0.6171 0.3187],

C®C.=1C®C),
5o =2®,0T), WMD(
F.®C=1d,C) WM

Vi = diag(0.7327 0.8612),
Vi=[—00677 —0.05360], W,=0.9334,
Qi = diag(0.0437 0.1108), Q;=[— 0.0859 — 0.0107]"

R; = 0.3311,
nf=1, i=0,1,2,3,67,8,

ng=2 i=45 N=9,

Xo=[1 11" X =diag0.1 01), Z =diag(0.1 0.1).

The spectral radius of @; equals (1 + 0.2sin(i)) x 1.25
so the system is mean-square-unstable (De Koning,
1992). The parameter 1 may be viewed as a system
parameter uncertainty measure (De Koning, 1992). If
4 =0 then the system has deterministic parameters and
as A increases the parameter uncertainty increases. For
three different values of 4 the solutions found by Algo-
rithms 1 and 2 are presented in Table 1. In each case
Algorithm 2 finds two different solutions. Of these two
solutions, in each case, Algorithm 1 finds the best. Unfor-
tunately, Algorithm 1 cannot be guaranteed to find the
global minimum (Van Willigenburg and De Koning,
1997). The final column in Table 1 gives the minimum
costs obtained with the optimal full-order compensator.
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Table 1
Solutions obtained from Algorithms 1 and 2 for different values of the system parameter uncertainty measure / with a convergence tolerance of 1078

Algorithm 1: . Algorithm 2 Full-order
Ao =0.1
A=0 Jy, = 33.5487 Jy, = 33.5487 Jy, = 33.7895 Jy, =29.3773
Jx, = 33.5487 Jx, = 33.5487 Jy, = 33.7895 Jy, = 29.3773
) =001 Jy, = 352902 Jy, = 352902 Jy, = 361523 Jy, = 308781
Jy, = 352902 Jn, = 352902 Jn, = 36.1523 Jn, = 30.8781
A=01 Jy, = 55.0898 Jy, = 55.0898 Jy, = 55.5067 Jy, = 47.8533
Jy, = 55.0898 Jn, = 55.0898 Jn, = 55.5067 Jy, = 47.8533
Table 2 well in practice (De Koning and Van Willigenburg, 1997;

Performance. of the algorithms with a convergence tolerance of 107°
when A =0.1

Number of iterations of Algorithm 2 for 10 random Initializations:
average = 58

44 51 49 64 63 60 62 66 72 49

Number of iterations of algorithm 1 with Ao = 0.1:301

If one specifies n{ =n;, i=0,1, ... ,N —1, Algorithms
1 and 2, due to Eq. (15b), generate a minimal realization of
the optimal full-order compensator with dimensions
which satisfy Eq. (3). Table 2 gives an impression of the
performance of the algorithms on the example. Using
Matlab 4.2¢2 on a pentium 90 MHz PC each iteration
takes approximately 0.26 s. With a convergence tolerance
of 107 Jy, and Jy, and are equal up to the third decimal.

6. Conclusions

To numerically solve the optimal finite-horizon re-
duced-order LQG compensation problem for systems
with white parameters strengthened discrete-time opti-
mal projection equations (SDOPE) were presented to-
gether with two numerical algorithms to solve the asso-
ciated two point boundary value problem. As in the
infinite-horizon time-invariant case the algorithms ex-
ploit the resemblance between the SDOPE and the two
Riccati equations of full-order LQG control for systems
with deterministic parameters. The algorithms were illus-
trated with a numerical example.

Despite the strengthening of the optimal projection
equations, unfortunately, in the case of reduced-order
compensation, it seems that in general multiple solutions
may exist. This phenomenon prevents the use of
homotopy degree theory to prove the convergence of
the algorithms. Despite this result, in the infinite-horizon
time-invariant case the algorithms turn out to work very

Van Willigenburg and De Koning, 1997). Although not
reported in this paper similar numerical experiences have
been obtained with the algorithms in this paper. In the
case of full-order compensation of systems with white
parameters the situation is much more favorable. In that
case homotopy degree theory can be used to prove the
uniqueness of the solution and the convergence of the
algorithms in the infinite-horizon time-invariant case (De
Koning, 1992). A similar result is expected in the finite-
horizon time-varying case. However, in the latter case
there is the technical difficulty that the optimal full-order
compensator, in general, is not minimal (Van Willigen-
burg and De Koning, 1998). Therefore, this subject is left
for future research.

With respect to the possible local optimality of optimal
reduced-order compensators the following practical
approach is suggested. Apply Algorithm 2, which is
initialized randomly, several times and pick the best
solution. Of course, one can never be sure that better
solutions do not exist. However, compared with the
performance of the optimal full-order compensator, the
loss of performance may serve as a criterion for accept-
ance of a (locally) optimal reduced-order compensator.
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