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Abstract

Using the minimality property of finite-horizon time-varying compensators, established in this paper, and the Moore-Penrose
pseudo-inverse instead of the standard inverse, strengthened discrete-time optimal projection equations (SDOPE) and associated
boundary conditions are derived for finite-horizon fixed-order LQG compensation. They constitute a two-point boundary value
problem explicit in the LQG problem parameters which is equivalent to first-order necessary optimality conditions and which is
suitable for numerical solution. The minimality property implies that minimal compensators have time-varying dimensions and that
the finite-horizon optimal full-order compensator is not minimal. The use of the Moore-Penrose pseudo-inverse is further exploited
to reveal that the optimal projection approach can be generalised, but only to partially include non-minimal compensators.
Furthermore, the structure of the space of optimal compensators with arbitrary dimensions is revealed to a large extent. Max-min
compensator dimensions are introduced and their significance in solving numerically the two-point boundary value problem is
explained. The numerical solution is presented in a recently published companion paper, which relies on the results of this

paper. . 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the optimal full-order LQG
compensator realises the best performance obtainable
with any compensator, regardless of its dimensions
(Kwakernaak & Sivan, 1972). Therefore, in practice
a priori fixed compensator dimensions will always be
chosen less than those of the system. Then optimal fixed-
order compensator design becomes optimal reduced-or-
der compensator design. Given the practical objective to
reduce the dimensions of the compensator, minimal com-
pensators are the interesting ones. In addition, in the
time-invariant infinite-horizon case the minimality of the
compensator enables the use of the standard inverse in
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deriving the optimal projection equations (Hyland &
Bernstein, 1984). As demonstrated in this paper, the use
of the Moore-Penrose pseudo-inverse, which is needed
in the time-varying case, significantly complicates the
derivation.

Given the restriction to minimal compensators, the
practical problem with the pre-specification of compen-
sator dimensions is that the optimal compensator with
these pre-specified dimensions may not be minimal
(Yousuff & Skelton, 1984; Van Willigenburg & De
Koning, 2000). Therefore, an important issue is the
selection of prescribed compensator dimensions which
guarantee a priori the minimality of the optimal compen-
sator. This issue is resolved in this paper using the notion
of max-min compensator dimensions, established in this
paper. This constitutes one of the main practical result of
this paper.

Except for the companion paper, Haddad and Tadmor
(1993) seem to be the only one who applied the optimal
projection approach to a finite-horizon fixed-order prob-
lem. In this case, in addition to the optimal projection
equations, boundary conditions determine the first-order
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necessary optimality conditions, which now constitute
a two-point boundary value problem. Haddad and Tad-
mor (1993), who considered the continuous time-varying
case, could not specify the boundary conditions in terms
of the parameters making up the problem. This prevents
the development of numerical algorithms. In this paper,
this problem is explained and resolved by introducing
a finite-horizon minimality property and by using the
Moore-Penrose pseudo-inverse. This constitutes another
main practical result of this paper. The use of the
Mocre-Penrose pseudo-inverse is further exploited to
largely reveal the structure of the space of optimal com-
pensators. This is the main theoretical result of the paper.

For the problem formulation and several other impor-
tant results we refer to the companion paper (Van Will-
igenburg & De Koning, 1999a). Although the results of
this paper also apply to systems with white parameters,
considered in the companion paper, to simplify the nota-
tion we will consider systems with deterministic param-
eters here. In that case, all terms in the companion paper
involving a tilde should be deleted and also all the over-
bars appearing above matrix expressions. The cross
covariance matrix of the system and the cross term in the
criterion are also deleted. Then the notation complies
with the one used in this paper.

2. Minimality of finite-horizon time-varying discrete-time
compensators

Consider the following deterministic time-varying
compensator defined over a finite horizon:

Rio1 =Fi% + Kiyi, %€R",
y;eRM, i=01,..N—1 (1)

Denote this compensator by (%o, FY, KY) where FN =
{Fo.Fy,....Fy_} and where K" = {K¢, Ky, ...,Ky_{}.
For compensator (1) we have

i—1
%i=Fioko + Y Fixs1Kiyis i:‘la"'aNs (2)
k=0
where
F,‘,,,:F,_IF,_Z,..le>m, Fl.mzlnf [ =m. (3)
Definition 1. (0, FY, K") is called reachable if for

VieR", Vi=12,..,N, I{yo,...,yi-1} such that
X; = X can be reached.

Consider the following deterministic time-varying
compensator defined over a finite horizon:
Xivy = Fiki, -‘ACiER"'C,

w = L%, w;eR™ i=01,....N—1. @)

Denote this compensator by (F¥,LY), where

LN: {LO’LI,'“ﬁLN—l}'

Definition 2. (FY L") is called observable if for
Vi=0,1,.“,N—1, ui:(), u,~+1=0,...,uN_1=0 1m-
plies X; = 0.

Consider the compensator
Riv1 = Fi% + K;yi, % €R", y,eR",
u,-=L,-§€,», MiERm', IIO,],,N“‘I

Denote this compensator by (%o, F¥, K, L"),

A non-zero initial condition X, and the boundary
condition Xy complicate the definition of a minimality
property over a finite horizon. From Eq. (5) observe that
Xy does not influence the input-output behaviour of the
compensator (%o, FV, K¥, L"), so its minimal dimension
ny = 0. Since %, is deterministic, at time i = 0 a basis
transformation exists such that at most one compensator
state variable of the transformed X, is unequal to zero.
Therefore, ny = 1 is the minimal dimension of £, that
preserves the input-output behaviour.

Definition 3. (0, F¥, K", L¥)is called minimal if (0, F¥, K")
is reachable and (FY, L") is observable and if in addition
ng =1 and ny = 0.

The following analysis explains why Definition 3 must
be generalised for compensators with %, # 0. Consider
the sets {%| %; = X{} of states that can be reached by the
compensator (%o, F¥, K¥) at each time i = 1,2,..., N us-
ing yo, y1,...,yi—1. These sets are determined by Eq. (2).
The first term on the right in Eq. (2) is a constant term
while the second term, through the variation of
Yo>Y1,---»Vi~1, either represents the full compensator
state-space at time i, i.e. R", or it represents a hyperplane
with dimension n{" < n{ inside the state-space R™. In the
latter case, since the hyperplane represented by the sec-
ond term contains the origin, a basis transformation
exists such that »;" unit vectors of the new basis span this
hyperplane. If the first term is part of this hyperplane,
which is always the case if X, = 0, then it does not change
the hyperplane. If not, the first term shifts the hyperplane
away from the origin. Then, to represent the hyperplane,
one additional unit vector, i.e. n{" + 1 state variables, is
needed.

Let W, e R" " denote the reachability grammian of
the compensator (0, F¥, KY) associated to the state
transition Xy = 0to X; = X, ie[1,N], ie,

i—1

T .
D Woi=Y Fipi1KiKiFiy+y, i=12,...,N. (6)
k=0
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Based on Eq. (2) define

i-1
v A~ ~T T T T
Woi = FioXoXoFio + Z Fip 1 Ki Ki Figvts

k=0

i=12..,N. (7)

Eq. (7) may be interpreted as a grammian associated
to the compensator state transition from %, to
X = X, ie[1,N]. Dual to the reachability grammian (6)
consider the observability grammian MY e R" " given
by

N-1 T
My =Y FLLLEF, i=01,.. N—1 (8)
=

i

Then from Definitions 1-3 and Egs. (2), (6)—(8) the follow-
ing two lemmas are immediate.

Lemma 1. (0,F", K") reachable =W, full rank
V ie[l,N]. Dually (FN, L¥) observable <M, y full rank
v ie[O,N — 1]

Lemma 2. (1) The first term on the right in Egq. (2)
lies inside the hyperplane with dimension n{" < nj deter-
mined by the second term on the right in Eq. (2)
=rank(W'y ;) = ni" <ni, ie[1,N].

(2) The first term on the right in Eq. (2) lies out-
side the hyperplane with dimension n{* < n{ determined
by the second term on the vright in Eq. (2)
=rank(W'y ;) =ni"+ 1 <nj, ie[1l,N].

(3) The second term on the right in Eq. (2) spans the full
state-space R"™ = rank(W'y ;) = nt, ie [1,N].

From Lemma 2 and the analysis following Definition
3 rank(Wy ;) represents precisely the minimum number of
compensator state variables needed to describe the
reachable space at time ie[1, N].

Definition 4. (%,, F¥, K", L") is called minimal if
Vie[0,N — 1], M; y full rank and if Vie[1, N],W; full
rank and if in addition ng = 1 and ny = 0.

It is well known that the reachability and observability
grammian (6), (8) can be given in recursive form as
follows:

Woiv1 = FiW o F{ + KK,

i=01,....N—1 Wy, =0eR"™"" )

My = F{M;s yF; + L{L;, i=01,....N —1,

My y = 0e R ", (10)

Similar to (9) the recursive form of (7) is given by
Woisr = F W FT + KKK, i=01...,N—1,
Wioo = Xokg e R™ ™™, (11)

Egs. (9) and (11) are identical except for the initial value
0 which is changed into %,%. This constitutes the gener-
alisation. Introduce

r{ = min(rank(W5 ;) rank(M; y)), i=0,1,...,N (12)

Then from Egs. (10)-(12)

X0 #(‘)’=>r§,=1, Xo =0=r5 =0, ry =0, (13a)
Mo £0
r—m <rfy, <ri+1l, ie[OON—1]. (13b)

From Eq. (13) and Definition 4 the dimensions of a min-
imal compensator satisfy

ne=r¢ i=12...,N—1, n5=1, n=0. (14)

On the other hand if (%o, F", K¥, L") has dimensions
n; satisfying (14) then one can always choose the compen-
sator such that it is minimal. Eqgs. (14) and (13b) imply
that the change of the dimension of the state of a minimal
compensator, from one discrete-time instant to the next,
is bounded from above and below.

3. First-order necessary optimality conditions

Similar to Haddad and Tadmor (1993), Van Willigen-
burg and De Koning (2000) first-order necessary
optimality conditions for the solution of the optimal
fixed-order compensation problem can be presented in
the form of a two-point boundary value problem in
which P}, P} P% S}, S!%, 82, i=0,1,...,N have to be
solved. These two triples of matrices are, respectively the
partitioning of the symmetric second moment matrix of
the closed-loop system and the dual closed-loop system.
The stationarity conditions, which must hold at each
discrete-time instant i = 0,1,..., N are,

S12 ®,P}? — S'2\I'\L;P? + S%, | F,P?

+ 8% ,K;C;PI* =0, (15a)
SiZ @, PICT — S}2\IL,P*'CT + 82, F,P}?'C!

+ 82 K,C;PICT + SE KW, =0, (15b)
—Ilsl, ,o;P!> —ITsi? K,C;P}* — I'TS!?, F, P}

+ I!SL  ILiP? + R;L;P} =0, (15¢)

S8'%0 + S2% = 0. (15d)
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The six dynamic equations with boundary conditions at
the initial and final time are

&!'st, @, + CIKIS T, @, + ®]'S!E K C;

+ CIKTS? (K.Ci + Q; =S!. SL =2, (15¢)
OS2 F, + CIK[S} F, — /'S T L

— CTKISIZArL, =S!% S\ =0, (150)
LI!S, IL; — FIS)2 L, — LTTTS!2, F,

+ FIS?  F, + LIR,L; =S}, $% =0, (15g)
o Plol —L;p2 ol — o, PPLITT + L, PILITT

+ V,=Pl\, Pb=xxd, (15h)
o.P!C/'K! — I;L;P*"CIK] + &, P]*F — I',L,P}F]

=PlZ,, P& =3X%{, (15i)
K,C;PICIKT + F,PP2 CIKT + K,C.PI2FI + FIP?F,

+ KW ,KF' =P, P% =3x8 (15))

The two-point boundary value problem (15) is stated
explicitly in terms of the problem parameters. Apart from
the time-varying nature and the dependence on bound-
ary conditions (15) strongly resembles the optimality
conditions in the infinite-horizon time-invariant case
(Van Willigenburg & De Koning, 2000). Therefore, our
main theorem is obtained through the generalisation of
results presented by Haddad and Tadmor (1993) and
Van Willigenburg and De Koning (2000). Since the proof
of the main theorem in this section requires the use of the
Moore-Penrose pseudo-inverse, instead of the standard
inverse, the following generalised lemma is needed.

Lemma 3 (Generalisation of Lemma 1 in Van Willigen-
burg & De Koning, 1999a). Suppose P.SeR"*" are
symmetric non-negative definite and rank(PS) = r°. Let
G,HeR™ ™" n®=r° be equal to those in Lemma 1 of the
companion paper extended with n° — r° rows of zeros. Then
from Lemma 1 in the companion paper,

G'H =t = PS(PS)”, (16a)
rank(G) = rank(H) = rank(t) = r*. (16b)

The matrix pair G, H and also all matrix pairs AG, AH,
where A€ R* ™" is an arbitrary unitary matrix, are called
generalised projective factorisations of PS. They all satisfy
equation (16). So up to unitary basis transformations in
R™ all possible projective factorisations in Lemma 1 of the
companion paper correspond one to one with all generalis-
ed projective factorisation in this lemma.

In the optimal fixed-order compensation problem the
dimensions nj, i =0,1,...,N of the compensator are
a priori fixed. However, we may investigate whether
a compensator with arbitrary dimensions nj,
i=0,1,...,N is a global or local minimum of the asso-
ciated fixed-order compensation problem, i.e. with pre-
scribed compensator dimensions nf, i =0,1,...,N,
determined by the compensator under investigation.
From here on, unless stated otherwise, this viewpoint will
be adopted. Given the LQG problem the recursions
(15e)—(15j) can be computed for arbitrary compensators,
with arbitrary dimensions »{, i = 0,1,..., N, irrespective
of whether (15a)-(15d) are satisfied.

Definition 5. Let A denote the set of all compensators
with arbitrary dimensions nf, i =0,1,...,N. Let A,
denote the set of pseudo-minimal compensators with
arbitrary dimensions »f, i =0,1,...,N and with the
properties

N — 1, (17a)

F; =S ,S% F;PP?, i=01,...

K; =S} ,S} Ki, i=01,....N—1, (17b)
L, =L;P}P}, i=0,1,... N-—1, (17¢)
%o = S% S2%,, (17d)

where P?, S, i = 0.1,..., N are determined by recursions
(15¢)—(15j). Let A,,;, denote the set of minimal compen-
sators in the sense of Definition 4.

Definition 6. Let Q denote the set of all compensators
(%0, FN, KN, L) with arbitrary dimensions n§,
i=0,1,...,N which satisfy the first-order necessary
optimality conditions (15). Let @Q, =QnA,. Let

Qmin - QmAmin-

The set A, is fully characterised in Section 4. It con-
tains all minimal compensators and some, but not all,
non-minimal compensators with arbitrary dimensions.
Therefore 4 > A, o A;,. From Theorems 3 and 5 in
Section 4, similarly, 2 > Q, = Q,;, and from Definition
64202 A, Q. and A, D Lmin- Theorem 1 in the
companion paper presented the SDOPE and associated
boundary conditions which determine the set Q,;,. The
next theorem generalises this theorem and determines the
set Q. which also includes some, but not all, non-minim-
al optimal compensators.

Theorem 1 (Generalisation of Theorem 1 in Van Will-
igenburg and De Koning, 1999a). The theorem is identical
to Theorem 1 in Van Willigenburg and De Koning (1999a)
when minimality of the- compensator, ie. (%o, FY, K",
LYMye Ay, is replaced with pseudo-minimality of the
compensator, i.e. (X, FN KN, LMYe A, and when the
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projective factorisations of Lemma 1 in the companion
paper are replaced with the generalised projective fac-
torisations in Lemma 3 of this paper. Furthermore,

rank (P;) = rank(S;) = rank(P;S;) = r¢ < nt,

i=0]1....,N, (18a)

X0 #0=r5 =1, Xq=0=r5 =0, ry=0. (18b)
Proof. The proof is analogous to proofs presented in
Haddad and Tadmor (1993) and Van Willigenburg and
De Koning (2000) with the standard inverses P? !, S !
replaced by the Moore-Penrose pseudo-inverses P7*,
S?7. In general, this substitution will not yield the same
results. Since Theorem 1 is restricted to the set A,
relations (17) hold, which reensure the validity of the

proof with the following single modification

161

Lemma 4. A, Q, A, Qi are invariant under basis
transformations of the compensator state-space at the dis-
crete-time instants i = 0,1, ... N. A4 \Apin> Q4 \Quin are
invariant under unitary basis transformations of the com-
pensator state-space.

Proof. For A the result is trivial. Let

A, i=01,...,N (20a)

describe basis transformations at the time instants i
which transform (%o, F", K", LV into (%5, F'N, K, L'")
given by

F; = Ai+1FiAiilv Ki=A4;:,K;, L; ZL.'A.‘_1,

(20b)

If (%0, F¥, K¥, LM)eQ it satisfies Eq. (15). Then
(X, F’Y, K'Y, L' e Q because (15) is satisfied with

G;H! = H,GI = p}p}* = S?*52. (19)

1= pl 12 plzgl "2 — A.P2AT
In Section 4, it will appear that Eq. (19) defines precisely Pi="Fi P oA b ApAr (20c)
the generalised projective factorisation in Lemma 4 and S oSl SIZoSIPAT S = ATSPA

that this factorisation implies in turn, that the compen-
sators in Theorem 1, satisfy (17), i.e. are all elements of
A, . The complete proof of Theorem 1 is documented in
Van Willigenburg and De Koning (1999b). [

The inequality in (18a) generalises the SDOPE to also

where ' refers to values corresponding to (%5, F'~, K™V,
L'™). Then, for A,;, and Q.;, the result follows from
the fact that rank(Wyg ;) and rank(M;y), i=0.1,...,N
are invariant under basis transformations of the compen-
sator state-space. For A\ Apin, 24 \Qmin. the result

include non-minimal optimal fixed-order compensators. follows from (17) and the fact that for unitary
In Section 5, it will be proved thatrf, i =1,2,...,N — l'in matrices A;, S;2" = (A; "S?A; Y = 4,7 7SPT A7 and

(18a) can be interpreted as the dimensions of a minimal
realisation of a compensator that satisfies Theorem 1.
Therefore, the inequality in (18a) implies that non-min-
imal realisations within the set A ., of all minimal locally
optimal compensators having dimensions less than »ng,
satisfy the first-order necessary optimality conditions. In
Section 4, it is investigated as to which of all these
solutions are the interesting ones in terms of the perfor-

.—e

— R, >0,i=01,... N1

PP* = (AP AN = 4P AL )
Theorem 3. If the system has the properties W, > 0,
i=01,....N — 1, then rank(Wé).,): rank ,z) i=01,.. N
where W, is the grammian, given by Eq. (11), of the
compensator. Dually if the criterion has the property
then rank(M,;N)z rank@'f)

i=0,1,...,N where M,y is the observability grammian,

~> mance. From (18a) and Lemma 3, rankaio):rf,, SO
— %, = Oifand only if X, = 0. Then Eq. (18b) complies with
—> Eq. (133).

given by Eq. (10), of the compensator.

Proof. Using Kreindler and Jameson (1972), from (15j) it

4. Relating all compensators to the optimal projection
approach

In this Section all compensators with arbitrary
dimensions »f, i =0,1,...,N are related to the optimal
projection approach through generalised basis trans-
formations, introduced in this section. Furthermore, the
set A4, to which Theorem 1 is restricted, is fully charac-
terised and so are all solutions of Theorem 1,
re. the set Q,. Also, it will be shown that
¥, i=12,....N — 1 in Theorem 1 can be interpreted as
the dimensions of a minimal realisation of the optimal
compensator.

follows that
P3| = (F; + K;C;P}*P*")P}(F; + K,C;P}*P*")T
+ K,[CyP} — PP2P3rpi2hcl + wi K],
i=01..N—1,

P% = ~‘AC()«‘A\'(T>, (21)
where P! — P!?P?*P!?" > 0. Given the conditions
P! — PI2P?*P2T >0, W; > 0 it follows from Egs. (11)

and (21) that rank (W) = rank(P?),i=0,1,...,N. O

Egs. (11) and (21) reveal that, under the conditions of
Theorem 3, the propagation of P, the second moment of
the compensator which is determined by the closed-loop
system, and the propagation of W7, ;, which is determined
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by the compensator alone, are almost identical. Dually,
this holds for the propagation of S?, which is determined
by the dual closed-loop system and M; y, which is deter-
mined by the compensator alone. This similarity will be
used to interpret the next, in Definitions 7-10 to be
composed transformations I1 and ©, as a procedure to
obtain a minimal realisation of a compensator. The
transformations /7 and @ reveal connections between,
and propertics of, the sets A4, A, Q4 and Q.

Definition 7 (Generalised basis transformation I1,). De-
fine the transformation IT,C, — CY which transforms
the arbitrary compensator C, = (%, FV, KV, L") into
compensator C4 = (%, F'Y, K'N, L'Y) with the same
dimensions. The transformation is determined by P2,
i=0,1,...,N obtained from recursions (15h)-(15j) for
the compensator C, = (%0, FY, K¥, L"). Consider the
following singular value decompositions of the non-nega-
tive symmetric matrices P7, i = 0,1,..., N,

P2 = A.D, A, i=01,...N. (22)

D; are diagonal with the non-zero elements appearing
first on the diagonal. 4;, i =0,1,..., N are unitary ma-
trices which determine unitary basis transformations,

=A% = Al'%; (23a)
such that,
- i D, 0
P2 =3 %" =A'P}A; =D, = [ ' }
0 0
D, eR™", rf = rank(P?) < nf, (23b)

where D; € R"*" are diagonal and full rank, X; is the
compensator state after the basis transformations and
P;? its second moment matrix. Eq. (23b) implies that the
final nj — r{ components of X; are zero with probability
one. Therefore,

P2 = [P'* (], P;'"*eR"™*" and full rank,
i=01,.. N (23¢)

and, without affecting the input and the output, we may
set to zero the final nf{,, — r{,, rows and final n{ — r{
columns of F; and the final n{ — r{ columns of L;. This is
compensator C} = (x4, F', K", L").

Definition 8 (Generalised basis transformation I1,). The
transformation [1,C, — C% is the dual of the one in
Definition 7, ie. 4;, i =0,1,...,N are now associated
with singular value decompositions of S?, i = 0,1,..., N,
obtained from the recursions (15¢)-(15g) and the final
n{yy — iy rows and final n{ — r{ columns of F; and the
final nf, , — r{,, rows of K; are set to zero.

Definition 9. Define the composite transformation
nc, »C% C3=1,11,C,.

Definition 10 (Generalised basis transformation ). ©C 4
drops the final zero rows and columns of compensator
C, while leaving one column of zeros for F, and one
column of zeros for L, if X, = 0.

Definition 11. Two compensators are equivalent if their
input-output behaviour over [0, N] is identical.

Theorem 4. The transformations I1C 4 and @11 C 4 have the

following properties:

INOTIC 1) = INUIC ) = In(C ), (24a)
CyeA=1ICed,, CyeA,. =>[C e, (24b)
CaeQ=11CeQ,, C,eQ, =>IMC, e, (24c¢)
and, under the conditions of Theorem 3,

Cy, [1C4, OIIC, are equivalent, (24d)

OI1IC 4 is a minimal realisation of C4 in the sense

of Definition 4. (24¢)

Proof. From Definitions 7-10 I1C 4, and ©@1IC 4 preserve
the input-output behaviour of the compensator within
the closed-loop syvstem and so the performance. This
implies (24a). To prove (24b) observe from (23b), (23c)
and (20) that the compensator [I,C, satisfies
F,P}P} =F, i=0,1,...,N and (17b). Dually, the com-
pensator I1,C , satisfies S? S?F; = F;, i =0,1,....N and
(17¢). Then from Definition 9, the compensator [1C4
satisfies (17). To prove (24c), note that I1,, [T, and
II consist of only unitary basis transformations and zero-
ing procedures. From Lemma 4, the former preserve
optimality. After the unitary basis transformation (23a) of
I1,, if the optimality conditions (15) hold, given (23b),
(23c), Eq. (15) is unaffected by the zeroing procedure of
IT,. Dually, the same applies to the zeroing procedure
of IT,.

To prove (24d), (24e) note that if the transformation
IT, in Definition 7 is based on singular value decomposi-
tions of Wy ;, instead of P?, i =0,1,...,N and dually if
IT, in Definition § is based on singular value decomposi-
tions of M y, instead of S7, i = 0,1, ..., N, then, similar to
the time-invariant case (Kwakernaak & Sivan, 1972), the
composite transformation IT, when followed by the trans-
formation 6, is a procedure to obtain a minimal realisa-
tion of the compensator. Under the conditions of
Theorem 3 the replacement of Wy, ; by P7 in the trans-
formations [, and dually of M,y by S? in the trans-
formation IT,, respectively, do not alter this result. [
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Theorem 5. Under the conditions of Theorem 3,
rii=12,....N — 1 in Theorem 1 represent the dimen-
sions of a minimal realisation of the optimal compensator.

Proof. Follows directly from the final part of the proof of
Theorem 4. [

The next lemma and theorem enable a complete char-
acterisation of the set A, ., to which Theorem 1 is re-
stricted, and also of the set ;. containing all solutions of
Theorem 1.

Lemma 5. Elements of A4, defined by Eq.(17),
(15e)-(15j), have the property,

S2'S2=ppP? . i=01,..,N. (25)

Proof. The result is a direct consequence of (17),
(15e)-(15)). O

Theorem 6. The set A, \Ani,. apart from unitary basis
transformations. contains minimal compensators extended
with rows and columns containing only zeros. The set
Q\Quin. apart from unitary basis transformations, con-
tains minimal locally optimal compensators extended with
rows and columns containing only zeros.

Proof. From Lemma 4, A, \A,;, and Q,\Q,;, are in-
variant under unitary basis transformations. Then, from
Lemma 4 and Eq. (23¢), thc unitary basis transformations
(23a) of Definition 7 transform any element of A, \ Ay,
into an equivalent element of A, \A,,;, being a minimal
compensator extended with rows and columns contain-
ing only zeros. The same holds for elements of
Q. \Qnin. U

Remark 1. In the singular case, i.c. when the conditions
W; >0, R; >0 from Theorem 3 are no longer satisfied,
rank (Wi ;) = rank (P?) and rank (M; y) = rank (S?),i = 0,
I,...,N can no longer be guaranteed. In that case the
transformation IT followed by @ preserves performance,
local optimality and input-output behaviour of the com-
pensator within the closed-loop system, but not necessarily
the input-output behaviour of the compensator alone.

5. The optimal full-order compensator, max-min
compensator dimensions and numerical considerations

In this section, the finite-horizon optimal full-order
compensator will be considered, which does not belong
to the set A, and so falls outside the scope of Theorem 1.
Using a minimal realisation of the optimal full-order
compensator it is investigated which solutions of

Theorem 1 are the interesting ones in terms of the perfor-
mance and the minimality of the compensator. The inter-
esting solutions turn out to be compensators with
max-min dimensions, introduced in this section. The
importance of max-min dimensions in choosing suitably
the prescribed compensator dimensions and in solving
numerically the optimal fixed-order compensation prob-
lem is explained. The choice of suitable prescribed com-
pensator dimensions is illustrated with an example.

Theorem 7. The finite-horizon optimal full-order compen-
sator, i.e. with ni =n;, i =0,1,...,N, which is globally
optimal, is the unique compensator that satisfies the first-
order necessary optimality conditions (15) and the condi-
tions P} = P!2, §7 = — S!2. It belongs to the set Q\Q., .

Proof. After the substitution of the optimal full-order
compensator matrix expressions in the first-order neces-
sary optimality conditions (15) these are satisfied with
P? = P!?, S? = — §!% These equalities are the ones that
ensure the global optimality of the full-order compen-
sator, since they state that %;,i=0,1,...,N is the
minimum variance estimator of x;, i=0,1,...,N and
similarly for the dual compensator. Since the minimum
variance estimator of x;, i = 0,1, ..., N is unique, no other
compensators exist that satisfy both P} = P}?
S? = — 5!? and the first-order necessary optimality con-
ditions.

Given the optimal full-order compensator matrix ex-
pressions and the equalities P} = P}?, S? = — S}2,
SDOPE are obtained in which G;, H;, 4, ply? |,
i=01..,N—1 and 7,,i=0]1,...,N no longer
appear (Van Willigenburg & De Koning, 1999b). Due
to this Egs. (10e), (10f) of the companion paper be-
come the well-known uncoupled estimation and con-
trol Riccati equations of full-order control. In all other
cases the SDOPE are intrinsically coupled, except when
P?, 57, orequivalently ;, i = 0,1,..., N, are full rank. The
latter is prevented by the boundary conditions (18b). [

Let n",i=0,1,...,N represent the dimensions of
a minimal realisation of the optimal full-order compen-
sator. Given the global optimality of the finite horizon
optimal full-order compensator it is no use choosing
n{ > ni" for some i.

Definition 12. The dimensions #§', i = 0,1, ..., N of com-
pensator 1 are called less than the dimensions
nit, i=01,...,N of compensator 2 if ni" <nj,
i=0,1,...,N and if n{* < n{* for at least one i.

Conjecture 1. The minimum costs, obtainable with a minim-
al compensator with dimensions ni < ni", i =0,1,...,N,
increase, if the dimensions of the minimal compensator
decrease.
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Theorem 8. Assume conjecture 1 holds. Then, if the
prescribed compensator dimensions satisfy n{ < nf",
i=01,....N, Eq. (13) and ny = 1 and ny = 0 the global
optimal compensator of the associated optimal fixed-order

Table 1
Choice of max-min compensator dimensions from »™ [, m;,
i=01,..., N

i 0 1 2 3 4 S
compensation problem is minimal.

n® o1 2 3 4 2 0
Proof. From Conjecture | and Theorem 5, the interest- l; <1 - +1 +1 +1
ing solutions of Theorem 1 are those with maximal values " 2 ) ) ) 12
ri, i=12,...,N — I, in the sense of Definition 12. These ne | 1 2 3 2 0
maximal values of {, i = 1,2,...,N — 1 are the maximal me o1 2 3 3 1 0
dimensions of a minimal compensator and are therefore meo ! 3 2 ' 0
called max-min dimensions associated with the pre-
scribed compensator dimensions nf, i = 1.2,...,N — L. If -5 0 gp‘g min(n®,n) and one should select n° such that

these max-min dimensions equal the prescribed dimen-
sions nj, i=12,...,N — 1, this guarantees that the
global optimal fixed-order compensator is minimal if,
according to Definition 4, in addition n§ = 1 and ny = 0.
The latter is the case if the conditions in Theorem 8 are
satisfied. [

Definition 13. Compensator dimensions that satisfy the
conditions of Theorem 8 are called max—min compensator
dimensions.

Example 1. Choice of max-min compensator dimen-
sions.

Consider a conventional finite-horizon discrete-time
LQG problem withn; =4, m; =2, [, =1,i=0,1,...,N,
N = 5. Note that the dimensions n*, i =0,1,...,N of
a minimal realisation of the optimal full-order compen-
sator should satisfy (13), with »ni replaced by
ot <n,i=01,....N and nj =1 and ny = 0. As-
sume that ni", i=0,1,....N cqual, respectively,
1,2,3,4,2,0. Then Table 1 is helpful to choose max-min
compensator dimensions.

The second row, i.e. nf", i =0,1,..., N in Table 1 rep-
resents maximum values allowed for nf, i =0,1,...,N.
According to Eq. (13) the third row ie. [;, i =0,1,...,N
represents the maximum increase allowed for nf,
i=0.1,....N when stepping forward in time while the
fourth row, i.e. m;, i = 0.1,..., N represents the maximum
increase allowed for nf, i=0,1,...,N when stepping
backward in time. The fifth and sixth rows nf, n}¢,
i=0,1,..., N represent two possible choices of max-min
compensator dimensions while the seventh row
n{, i=0,1,...,N represents compensator dimensions
that are not max-min dimensions because the increase of
n{¢ from i =1 to 2 exceeds the bound /;, = 1. Observe
from Definition 4 and Eq. (13), that when %, = 0, the first
element of the third row in Table 1, instead of [,, is equal
toly, — 1.

Remark 2. The results presented in this paper
also apply to the infinite-horizon time-invariant case,
when the time indices are removed everywhere, and
also the boundary conditions. Eq. (13) becomes

0 < n® < n™ In the infinite-horizon time-invariant case
the optimal full-order compensator is usually minimal,
1.e. n™ = n, but may not be minimal, even if the system is
minimal (Yousuff & Skelton, 1984; Van Willigenburg
& De Koning, 2000).

6. Conclusions

The computation of optimal fixed-order compensators
based on the SDOPE should be performed as follows.
First, the dimensions of a minimal realisation of the
optimal full-order compensator must be computed.
Given these, the prescribed compensator dimensions in
the fixed-order case should be max—min dimensions that
can be chosen based on a simple table, introduced in this
paper. This guarantees that the global optimum is a min-
imal compensator, i.e. a compensator that satisfies the
SDOPE in Theorem 1 withr{ =n{, i=12,...,N — 1. In
the infinite-horizon time-invariant case the full-order
compensator is usually minimal while in the finite-hor-
izon time-varying case it never is. Then the choice of
max-min compensator dimensions becomes crucial. The
reason is that in the finite-horizon case at the boundaries
the dimensions of a minimal compensator drop in one or
several time steps. In the continuous-time case this drop
occurs instantaneously. Then, from the results in this
paper, the problem met by Haddad and Tadmor (1993)
can be overcome in a similar manner.

In deriving the SDOPE the drop of the dimension of
a finite-horizon minimal compensator at the boundaries
required the use of the Moore-Penrose pseudoinverse.
The use of the Moore-Penrose inverse was further ex-
ploited to reveal that the optimal projection approach
can be generalised, but only to partially include non-
minimal compensators. Also the structure of the space of
optimal compensators was revealed to a large extent.

Within the problem formulation time-varying dimen-
sions of the system state, the input and the output are
allowed. Time-varying dimensions of the input, the out-
put and the system state, arise in digital control problems
if the sampling is performed asynchronously (Van
Willigenburg & De Koning, 1995), or in fault tolerant
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systems (Garg & Hedrick, 1993). The companion paper
treated the numerical solution of the SDOPE and the
generalisation to systems with white parameters for
which the results of this paper also apply.
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