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DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS APPLIED TO
RIGID MANIPULATORS

Abstract

Based on the recently developed numerical solution of the
sampled-data (digital) LQG problem for linear time-varying systems
we will treat the design and computation of implementable digital
compensators for continuous-time nonlinear uncertain systems. A
compensator is used to control the system about a so called ideal
input-state response. The ideal input-state response is computed
off-line through optimization and represents the desired system
behavior. In this paper both the compensator design and the
optimization are characterized by the fact that the
continuous-time system behavior and the digital nature of the
controller are explicitly considered in both problems. Usual
controller designs neglect the inter-sample behavior or the
digital nature of the controller. The digital controllers that
result from our design procedure need only a very small number of
on-line computations to be performed. As an example we compute and
simulate digital controllers for a robotic manipulator.

1. Introduction

Industrial processes very often constitute continuous-time
systems. The automatic control of industrial processes is
generally performed by digital computers. In these cases the
.automatic control system is a digital control system that can be
schematically represented by figure 1. The continuous-time system
has a sampler at the output and a sampler and zero order hold
circuit at the input.
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Figure 1: Digital Control System

The design of a digital controller for a Continuous—time system is
often referred to as a digital control problem. The term digital
throughout this paper will refer to the facts that

a) We have sampled measurements since a computer cannot deal
with continuous-time measurements

b) The control is of piecewise constant nature (a stair case
function), since a sampler and zero order hold circuit
connect the computer to the input of the system

c) We consider the continuous-time behavior of the system.

Although these seem all very straightforward considerations, much
to surprise, very often at least one of these considerations is
not met in the design of digital controllers for continuous-time
systems. Very often the design only considers the system behavior
at the sampling instants, completely disregarding the inter-sample
behavior (Ackerman 1985, Astrom and Wittenmark 1984, Franklin and
Powell 1980). So in that case consideration c) is not met. 1In
other cases continuous-time control algorithms are designed, which
then somehow have to be approximated by a digital controller
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(Athans 1971). In these cases both consideration a) and b) are not
met. In both cases there is a demand for a "small" sampling time,
in the former case to prevent undesirable inter-sample behavior,
in the latter case to properly approximate  the continuous-time
algorithm. This demand, for instance in the case of robot control
where the computational burden on the computer is high, results in
computational difficulties. Even if the sampling time is chosen to
be '"small" the digital «controllers will only constitute
approximate solutions.

Over the years only a few publications have appeared which
consider digital control problems in the proper context 3just
described (Levis, Schlueter and Athans 1971, Nour Eldin 1971,
Halyo and Caglayan 1976, De Koning 1980,1984, Stengel 1986, Van
Willigenburg and De Koning 1990 a,b). From these publications it
is apparent that it hardly takes extra effort to solve digital
control problems in the proper context.

Since most industrial processes are nonlinear in this paper we
will deal with the design of digital controllers for
continuous-time nonlinear uncertain systems where the uncertainty
consists of additive white .system and measurement noise. Based on
the solution to the digital LQG problem (Van Willigenburg and De
Koning 1990b) and a numerical procedure to compute it (Van
Willigenburg 1990a) we will treat the design and computation of a
digital compensator which is used to control a nonlinear system
about an off-line determined so called ideal input-state response.
This response defines the desired system behavior. The computation
of the ideal input-state response will also be treated. The design
procedure may be compared to the one presented by Athans (1971).
He considered the design of continuous~time controllers where we
consider the design of implementable digital controllers. The
digital controllers that result are characterized by the fact that
the number of on-line computations to be performed is very small.

As an example we will present the design and simulation of digital
controllers for the IBM 7535 B 04 robot, which constitutes a
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highly nonlinear system. Using our approach we will demonstrate
that proper results are obtained with controllers that have a
sampling time of 70mS, which is generally considered too large for
robot control (Craig 1986).

2. Continuous-time optimal control of nonlinear uncertain

systems

Athans (1971) has excellently described the use of the
solution to the continuous-time ILQG problem to control
continuous-time nonlinear uncertain systems about an ideal
input—State response, that defines the desired system behavior.
The ideal input-state response will often be referred to as the
trajectory. The uncertainty is modeled by additive white gaussian
system and measurement noise and the behavior is considered over a

finite time interval [t,,t The dynamics of the continuous-time

£l
nonlinear uncertain system are therefore given by

x(t) = f(x(t),u(t),t) + £(t),  te[t,t [1a]

£l

[}

y(t) = g(x(t),u(t),t) + oe(t), te[t ,t [1b]

£l
where f is a nonlinear function and also g may be a nonlinear
function. & and 68 represent the additive white system and
measurement noise. Based on the linearized dynamics about the
trajectory, which approximately describe the dynamic behavior of
small deviations from the trajectory, the solution of the
continuous-time LQG problem, which constitutes a compensator, is
used to control deviations from the trajectory to zero. The
continuous time control system is schematically represented in
figure 2.
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Figure 2: Continuous-time control system
with a compensator
based on linearized dynamics

Athans divides the controller design procedure into five parts,

each part involving several steps.

Part A:

Step 1:

Step 2:

Step 3:

Deterministic Modeling.
Determination of the deterministic part of the nonlinear

system equation (la), i.e. f(x(t),u(t),t).

Determination of the deterministic part of the output
equation (1b), i.e. g(x(t),u(t),t).

Based on the deterministic version of the model (1), i.e.

X = £(x(t),u(t),t) [2a)
y(t) = g(x(t)u(t),t) [2b]
determine a so called ideal input-state-output
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response,

ub(t): ideal input, [3a]
xb(t): ideal state response, [3b]
yb(t): ideal output response. [3c])

The ideal input-state response reflects how we actually want the
system to behave. uo(t) and xo(t) are related through equation
(2a) and constitute the trajectory about which we want to control
the system. The ideal input-state response, i.e. the trajectory,
may be the outcome of a deterministic optimization problem
constrained by the nonlinear dynamics (2a). The ideal output
response via (2b) directly follows from the ideal state response.

Part B: Stochastic Modeling.

Step 4: Modeling of uncertainty in the initial state of the
system (1).

Selection of the mean f(to).
Selection of the covariance

T, = covix(t )ix(t))]. (4]
Step 5: Modeling of uncertainty in the system (1).
Selection of the covariance
E(t)d(t-t) = cov[g(t);:€(T)] [5]
where £(t) is the additive white system noise in (1a).
Step 6: Modeling of measurement uncertainty.
Selection of the covariance

@(t)s(t-t) = cov[B(t);6(T)] [6]
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Part C:

Step 7:

Step 8:

DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS

where 6(t) is the additive white measurement noise in
(1b) .

Linearization modeling.

Establishing of the 1linearized model

sx(t) A (t) 8x(t) + B (t) su(t), [7a]

3y(t) = C (t) 8x(t), [7b]

about the ideal input-state response ub(t), xb(t), below
referred to by o, i.e.

af af ag
, B (t) = : C (L) = ’ [7c]

° 0 ax(t)|o

A (t) =
° ax(t)|o au(t)lo

which approximately describes the dynamic behavior of
the perturbation variables

du(t) = u(t) - u (t), [8a]
8x(t) = x(t) - x (t), [8b]
dy(t) =y(t) -y, (t), [8c]

as long as they are small.

With due consideration of Zo, Z(t) and @(t) and depending
on the degree of nonlinearity of the system (1) select
the cost weighting matrices Qo(t), 1%(t) and F, of the
cost criterion

te
J(u) = BXT(tf)FOSX(tf) +J' axT(t)Qo(t)sx(t) +

to
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Part D:

Step 9:

Step 10:

Part E:

Step 11:

Step 12:

Part F:

6uT(t)R°(t)6u(t) dt. (9]

which is used to keep the perturbation variables, i.e.
deviations from the trajectory, small.

Control problem computation.
Given the matrices established in steps 7 and 8, solve

the linear regulator problem (8], [9], i.e. ~solve
backward in time the control Ricatti equation,

. T
K (t) = =K (t)A,(t) - AT(E)K (£) - Q (t) +

F. [10]

K,(t)B ()R (£) B (E)K (L), K (tp) = F,

From the solution Kb(t), determine the feedback gain
matrix,

_ -1 T
G, (t) = R'(t)B (t)K (t). [11]
Filtering problem computation.

Given the matrices established in steps 4,5 and 6 solve
forward in time the filter Ricatti equation,

E(t) = A ()T () + T (t)A(t) + E(t) -

~1 T _
Z,(t)c ()8, (t)c )z (), £ (t)) =, [12]
From the solution Z (t), determine the filter gain
matrix,
_ T -1
H(t) = I (t)C (t)07 (t). [13]

Construction of the linearized dynamic compensator.
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Step 13: The linearized dynamic compensator is given by

8X(t) = [4(t) - B (t)G (t) - H (t)C (t)] 8x(t)
+ H (t)dy(t), 8%(t) = :'co—xo(to), [14a]
du(t) = -G (t) dx(t) [14Db)

where &x(t) is the minimum variance estimate of
8x(t), generated by the filter.

Since all matrices appearing in the compensator equation (14) can
be computed off-line we observe that the number of on-line
computations to be performed is very small which is a very
attractive property. Athans stresses the importance of part A and
B and step 8 of part C since these all involve modeling issues,
where the ability of the engineer is crucial, since no recipes
exist to translate the "real world" into a mathematical model. The
other steps Athans calls mechanical since a variety of
computational techniques. to solve the Ricatti differential

equation were already available then.

Concerning the implementation Athans suggest the implementation of
an approximation of (14) on a digital computer. The exact
implementation of the continuous~-time control algorithm (14) on a
digital computer is impossible since the digital nature prevents
the ability to deal with continuous-time measurements as well as
it prevents the generation of a control which is adjusted
continuously in time.

3. Digital (sampled-data) optimal control of nonlinear uncertain

systems

Since the compensator (14) cannot be implemented in a digital
computer approximations have to be made, or we have to incorporate
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the digital nature of the computer into the control problem.
Consider the general digital control system depicted in figure 1
with a sampler at the output and a sampler and zero order hold at
the input of the continuous-time system. The sampling process is
characterized by

a) sampling instants t0<t1<t2<, o<t
tk, k=0,1,2,..,N-1
t), k=0,1,2,..,N-1

b) sampling periods Tk=tk+1-

c) sampling intervals (t,.,
The tasks to be performed by the computer dQuring the sampling
interval [t,,,-t,) are schematically represented by figure 3. At
time tk the computer must adjust the control u(tk) and observe the
output y(tk). Within [tku,tk) the next control u(tkﬂ) must be
computed.

Tk

t tt

/4 \\ Computation o /4

ulty) y (1) Uty

Figure 3: Task sequence of the computer

Observe that the sampling instants are not necessarily
equidistant. Because of the sampler and the zero order hold at the
input of the continuous-time system the continuous-time control is
now of the following form

u(t) =u(t), te[t,t ), k=0,1,2,..,N-1 [15]

k+1

The continuous-time control (15) is called a piecewise constant
control and is uniquely determined by the finite sequence

u(t), k=0,1,2,..,N-1 [16]
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Because of the sampler at the output we now obtain a finite
discrete~-time sequence of measurements given by

Yy, = Y(tk) k=0,1,2,..,N-1 [17]

Summarizing instead of continuous-time measurements we now have a
finite discrete-time sequence of measurements (17) and instead of
an unconstrained continuous~-time control we now have a piecewise
constant control (15). Finally we assume the final sampling
instant to satisfy

t =t [18]
where t, is given by (1).

The piecewise constant nature of the control restricts the choice
of the ideal input uo(t) determined in step 3. When considered

over  the finite time interval [t,,t unconstrained

f]l
continuous-time controls constitute an infinite dimensional space,
while piecewise constant controls constitute a finite dimensional
space, since they are uniquely determined by the finite sequence

(16) .

Consider the ideal input-state response in step 3 to be the
outcome of an optimization problem. This problem is of the
following general form (Lewis 1986). Given the deterministic
initial state

x(t) = x, [19]

of the deterministic system (2) minimize the integral criterion

t
£

J(x,u) = W(X(tf),tf) + { L(x,u,t)dt [20]

to
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constrained by the dynamics (2) and some additional state and
control constraints,

x(t) € X, te[t,t,] [21a]

u(t) e U, te[t,t [21b]

£l
Note that any admissible control, i.e. a control satisfying (21b)
via (2) and (19) uniquely determines the value of the integral
criterion (20). So the optimization problem constitutes an optimal
control problem, i.e. the problem of finding a control satisfying
(21b) which minimizes (20) such that (21a) is satisfied. If the
control constraints (21b) limit the controls to belong to a finite
dimensional space, each control is uniquely determined by a finite
sequence. An example is the piecewise constant constrained (15) on
the control, each piecewise constant control being uniquely
determined by the finite sequence (16). In these cases the optimal
control problem may be regarded as the problem of minimizing the
generally nonlinear function (20) of a finite sequence, i.e. the
sequence (16) in case of a piecewise constant constrained on the
control. Summarizing in these cases the optimal control problem
may be regarded as the constrained minimization of a nonlinear
function of a finite number of variables (Goh and Teo 1988). This
problem is generally much more easy to solve than the original
one. The nonlinear function value can be computed by numerical
integration of equation (2a) and (20) given the control (15). In
other words, to account for the piecewise constant constrained on
the control simplifies the determination of the ideal input-state
response through optimization. Very often however, the
optimization is performed without considering the piecewise
constant constrained on uo(t)!

Obviously the fact that we now have a finite discrete-time
sequence of measurements and a piecewise constant constraint on
the control also affects the compensator (14). We now obtain a
digital control system schematically represented by figure 4.
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Figure 4: Digital control system
with a digital compensator
based on linearized dynamics

We now have to solve a different LQG problem, called the
sampled-data LQG problem (Halyo and Caglayan 1976) or the digital
IQG problem (Van Willigenburg and De Koning 1990b). Halyo and
Caglayan only partially solved the sampled-data LQG prbblem since
they did not present expressions for the minimum cost of the
problem. Expressions for the minimum cost, explicit in the system
and criterion matrices, were presented by Van Willigenburg and De
Koning, who solved both the digital regulator and tracking problem
completely. Both publications however were not concerned with the
numerical computation of the solution. The numerical computation
is not straightforward since it for instance involves the
computation and integration of expressions involving the
state-transition matrix of time-varying linear systems. These
problems were solved by Van Willigenburq (1990a) who presented a
numerical solution to the digital LQG problem.

If we incorporate the digital nature of the control system into
the control problem, we have to replace the solution of the
continuous-time LQG problem by the solution of the digital
(sampled-data) LQG problem. Considering the design procedure
presented in the previous paragraph only Part D,E and F, i.e. only
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the mechanical part of the design changes. So the modeling issues,
where the ability of the engineer is crucial, are not at all
affected! Although the modeling issues are unchanged we do have to
reconsider step 3, and as a result the mechanical step 7, since
step 3 is affected by the piecewise constant constraint on the
control. Still using the same models and reconsidering step 3, and
as a result step 7, by replacing the numerical tools to compute
the solution to the continuous-time LQG problem by tools to
compute the solution to the digital LQG problem (Van Willigenburg
1990a) we design a truly implementable digital controller. The new
versions of part D,E and F of the design procedure are given below

Part D: Control problem computation.

Step 9: Given the matrices established in steps 7 and 8, solve
the digital regulator problem associated with [8], [9],
and the digital control system in figure 1, i.e. solve
the discrete-time control Ricatti equation,

— (o - T ,_ T , -
S, =(8.-T' G)'S (8,-T G)+G,R G+Q,, S5=F,. [22)]

where the index k refers to values at the sampling
instant t - The matrices in equation (22) are given by

-1, T

& =8 - [R'M, [23a]
Ql = Q - MR-1MT [23b]
k Kk K k k'’
- ~1.T ,
G=(IS, ,TL*R) IS, % [(23¢c]
where
tk+1 T
o = [ "ttty oty s(e,t at, [23d]
t
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Step 10:

Part E:

Step 11:

. DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS

t
k+1 T, 8
M = J ¥(t,t) Q. (t) T(t,t) dt, [23e)
tk
R—tk’int + (e, t t) T'(t,t )] dt 23f
= [ R )+ TT(E ) 0u(e) T(EE)] de, [23£]
tk
I, =T, .t), [239]
in which
t
r(t,t) =I %(t,s) B(s) ds, [23h]
tk
3 =8t ,t), [231i]

® being the state transition matrix of the linearized
system (7a).

The feedback gain matrices are given by (23c) so

— -1..T » _ -
6=(,s,,, [ *R,) TS, &, k=0,1,2,..,N-1 [24]

Estimator problem computation.

Given the matrices established in steps 4,5 and 6 solve
forward in time the discrete-time predictor Ricatti
equation,
_ _ _ T T, =

P, = (8-HC)P (3-HC,) +H®H+E , P=T (t) [25]
where again the index k refers to the values at the
sampling instants t and

H =@

T T -1
P.C.(CPC+0 ) [26a]
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and finally
Ck = Cb(tk). [26b]

Step 12: The Kalman one step ahead predictor gain matrices are
given by (26a) so
H =9

T T ~1
P.C.(CPCH ). [27]

Part F: Construction of the linearized dynamic compensator.
Step 13: The linearized dynamic compensator is given by
Si(tku)=[<I>k—Hka]65rv(tk) +H 8y(t,)+T su(t)),
8% =x(t,)-X,, [28a]
su(t) = —Gka:‘z(tk) [28Db]

where Bi(tk) is the minimum variance estimate of 8x(t),
generated by the one step ahead predictor.

Part F from the continuous-time Kalman Filter now turns into the
discrete-time Kalman one step ahead predictor (Van Willigenburg
and De Koning 1990b), which is very well known. Part D from the
continuous-time linear optimal regulator turns into the digital
optimal regulator (Van Willigenburg and De Koning 1990b) or
sampled-data optimal regulator (Halyo and Caglayan 1976). This
regulator problem considers the minimization of a continuous-time
quadratic criterion of the form (9) by means of a piecewise
constant control given complete state information at the sampling
instants. Since this problem is of vital importance in the context
of digital control of continucus-time systems it is rather
surprising, to say the least, that this regulator problem has only
received minor attention. The reason is that instead the solution
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to the discrete-time regulator problem is used. However, this
regulator problem minimizes a discrete-time quadratic criterion
which only considers the continuous-time behavior of the
perturbation variables (8a,b) at the sampling instants. It
therefore constitutes only an approximate solution to the problem
since it completely disregards the inter-sample behavior! This
creates the demand for a "small" sampling time to prevent
undesirable inter-sample behavior. The discrete-time criterion
furthermore must be selected to generate a desired continuous-time
behavior!

4. First order controllability and reconstructibility of a

nonlinear continuous-time system about a trajectory

A first order approximation, i.e. the linearized model (7),
is used to approximate the dynamic behavior of the perturbation
variables 8x(t) and 8u(t). The error using this approximation is
primarily determined by quadratic terms in 8x(t) and 8u(t) as long
as these perturbation variables remain small. This justifies the
use of the quadratic criterion (9) which tries to minimize
quadratic terms in 8x(t) and du(t). Still the use of the quadratic
criterion (9) does not guarantee that the perturbation variables
remain small. If the linearized dynamics (7) are differentially
uncontrollable over a time interval (t1'tz) within [t,,t] this
implies that <certain deviations &x(t), te(tl,tz) from the
trajectory cannot be controlled to zero within (t,,t)) (Van
Willigenburg 1990b). This however implies that those deviations
3x(t) are not influenced by the control during (tvtz), so they
cannot in general be expected to remain small. Since the
controller design is based on the idea that the perturbation
variables do remain small, the differential controllability of the
linearized dynamics is an important property considering the
successful application of the controller presented in section 2.
Van Willigenburg (1990b) demonstrated that for a rigid manipulator
with friction, which we will consider in this paper as an example
of a nonlinear system, any trajectory is first order controllable,
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i.e. the 1linearized dynamics (7) about any trajectory are
differentially controllable. In case of rigid manipulators the
linearized dynamics about any trajectory are also differentially
reconstructible. The property of differential reconstructibility
is dual to the property of differential controllability (Van
Willigenburg 1990b). Although not recognized as such by Van
Willigenburg (1990b) the differential reconstructibility of the
linearized dynamics about the tfajectory, which may be called
first order reconstructibility, presents another important
property for the successful application of the controller in
section 2. This can be intuitively understood since in case the
linearized dynamics are differentially unreconstructible over a
time interval (t1’tz) within [to,tf] certain deviations &8x(t) do
not affect the measurements during (trtz), and therefore &8x(t)
may become unreliable and we cannot in general expect &x(t) to
remain small within (t1'tz)'

In case of the digital controller of section 3, aspects of
controllability and reconstructibility of the linearized dynamics
about the trajectory should be reconsidered, since we have sampled
measurements and a piecewise constant control. Because of this,
loosely speaking, the system will always be less controllable. and
reconstructible, so compared to the controller of section 2,
things will not improve. Concerning controllability of linear
systems by means of piecewise constant controls there is the
result of Furi et al. (1985), stating that complete
controllability by means of continuous-time controls is equivalent
to complete controllability by means of piecewise constant
controls. Since we are interested in results over the finite time
interval [to,tf] this is not the exact result we are looking for.
In this paper we will not further concern ourselves with these
problems, although they certainly are of interest. We will Jjust
apply the digital controller design procedure outlined in section
2 and 3 to a robotic manipulator and observe the result.

5. Digital optimal control of the IBM 7535 B 04 robotic
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manipulator

In this section we present examples of the numerical
computation of digital optimal controllers for the IBM 7535 B 04
robotic manipulator, designed according to the procedure described
in section 2 and 3. Simulation results are also presented to
demonstrate the behavior of the digital optimal robot control
system.

We will use a dynamic model of the IBM 7535 B 04 robot taken from
the literature (Geering et al. 1986, Van Willigenburg and Loop
1990) . Before we present the examples we want to stress that our
aim is not to apply these controllers in practice, our aim is
merely to demonstrate how the design procedure works and that the
numerically computed controllers, when applied to the nonlinear
system disturbed by additive white noise, result in a proper
performance. To be more specific, we will not be concerned with
the careful choice of the design parameters, i.e. the covariance
matrices (4), (5) and (6) and the matrices appearing in the cost
criterion (9). If the aim is to apply the controller in practice
the careful choice of the design parameters is essential, and that
is where the ability of the engineer comes in.

Although the numerical solution to the digital LQG problem (Van
Willigenburg 1990a) allows for the choice of time-varying
covariance and criterion matrices we will chose both the
covariance and the criterion matrices to be time-invariant to
simplify the examples.

Step by step we will now follow the design steps, i.e. the parts
A, B and C outlined in section 2.

Part A: Deterministic Modeling.
Step 1: Determination of f(x(t),u(t),t).

The dynamics of a rigid N link manipulator with friction
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are given by (Van Willigenburg and Loop 1990)

X, = x, [29a]

X

» -M (x,)T(x ,x) + Mt (x,)u. [29b]

where x, is a vector of dimension N containing the joint angles of
the 1links, x, is a vector of dimension N containing the joint
angular velocities, M(x)) is a inertia matrix depending on the
momentary configuration of the robot and T(xl,xz) represents
centrifugal, coriolis, gravity and friction forces. Finally u is
the control vector of dimension N, containing the actuation torque
applied to each joint. Since T(xl,xz) in (29b) is highly nonlinear
manipulators constitute nonlinear systems, while X, and x,
constitute a natural choice for the state variables. Observe that
the system is linear in the control. The dynamics of the IBM 7535
B 04 robotic manipulator can be modeled using the closed form
dynamics of a rigid two link manipulator (Van Willigenburg and
Loop 1990) given by Asada and Slotine (1986). In terms of equation
(28) we obtain

— T

x, = (6,,6,), [30a]
_ . . T

x, = (8,,6,)", [30b]

where 6 and 6, are the joint angles of the links,

Mn H1z
M(x,) = , [31]
"21 Mzz
where
_ 2 2 2
M11 = mllc1 + 11 + mz[l1 + 1c2 + 211lc2cos(62)] + Iz, [32a]
_ 2
2 = mzlllzcos(ez) + mzlc2 + Iz’ (32b]
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My = My [32¢c)
M = mzlz2 + I, [324]
and
-hé> - 2hé 6, + G + F,
T %) -né2 + 6.+ F (23]
1 2 2

where

h = mzlilczsin(ez), [{34a]
Gﬁ = nu1c1g cos(el) + nag{lczcos(91+ 82) + licos(el)), [34b]
G, =ml_g cos(er+ 92); {34c)
F, = clsgn(él) + v1é1, [34d]
F, = czsgn(éz) + Vzéz. [34e]

I, and I2 are the moments of inertia with respect to the center of
mass, m and m, are the total masses, 1c1 and lcz the distances
between the center of mass and the joint, v, and v, the viscous
friction coefficients and c, and c, are the coulomb friction
coefficients of the corresponding 1link. Finally g is the
acceleration due to gravity. Equations (33b) and (33c) represent
gravity forces, in case the robot moves in a vertical plane. Since
the IBM 7535 B 04 robot moves in a horizontal plane they should be
disregarded. The Coulomb and viscous friction forces (33d) and
(33e) are neglected in case of the IBM 7535 B 04 robot. The
remaining parameter values appearing in (31) and (33) for the IBM
7535 B 04 robot are as follows (Geering et al. 1986, Van
Willigenburg and Loop 1990)

1l = 0.4 m l2 = 0.25 m 1‘::2 = 0.161 m
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- 2 _ 2 — 2
m, = 21 kg mllc1 + I1 = 1.6 mkg 12 = 0.273 mkg. [35]

Step 2: Determination of g(x(t),u(t),t)

Each joint angle of the manipulator is measured by an
encoder, and often each joint angular velocity is measured by a
tacho generator. We will consider both cases so we either assume
the complete state is measured, i.e.

y(t) = C_(t) x(t) (36a]
where

1000
c =|0100 [36b]
c

0010

0001

or we assume

y(t) = c (t) x(t), (37a]
where
1000
c, = 0100 [37b]
00O00O
0000

Step 3: Determination of ideal input-state-output response,
u (t), x,(t), y,(t).

As the ideal input-state response we take a time-optimal
solution computed by Van Willigenburg and Loop (1990) who
presented numerical procedures to compute time-optimal solutions
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for rigid manipulators. The time-optimal control problem is to
find the control which drives the manipulator from a fixed initial
to a fixed final state in minimum time given bounds on the control
variables and a deterministic dynamic model of the manipulator. We
take a solution computed by a method based on control
parameterization (Teo et al 1989). The control parameterization
consists of the assumption that the control is piecewise constant,
which is the necessary assumption to be made, in case of digital
control. Furthermore the sampling times are assumed to be
equidistant. Given the fixed initial state

x,(t)) = [0 0 0 0", [38a]

the fixed final state

x(t) = [2.5 0 0 0], [(38b]
the bounds

lu, ()] = 25.0 teft ,t ], [39a]
lu,(t)l = 9.0 telt,,t ] [39b]

on the control variables and the deterministic dynamics (30)-(35)
of the IBM 7535 B 04 robot the time-optimal piecewise constant
control is shown by the broken lines in figure 5b and the
corresponding state-trajectory by the broken lines in figure 5a.
The time-optimal solution presents the control in an open-loop
fashion. To obtain a solution in feedback form, which we need in
practice to overcome modeling and measurement errors and
uncertainty, we need to recompute the solution on-line at every
sampling instant. Since sampling times for robot manipulators are
of the order of 10~100mS, even for very fast computers, this is
impossible. Therefore we design a digital compensator, as
described in sections 2 and 3, to control the system about the
time-optimal input-state response. In this case the number of
on-line computations is very small. To be able to control the

262



DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS

system about the time-optimal input-state response, the bounds
(39) must constitute conservative bounds, since.they must allow
for control corrections su(t). This is the price one has to pay
for the fact that we incorporate uncertainty into the time-optimal
control problem.

Part B: Stochastic Modeling.

As already mentioned, our aim is not to design a
controller which will be used in practice, but merely to
demonstrate the controller design procedure. Therefore we will
only briefly, or not at all, motivate the choice of the following
design parameters. In practice the choice of the design parameters
is essential and that is where the ability of the engineer comes
in.

Step 4: Modeling of uncertainty in the initial state of the
system (1).

We chose
x(to)=x(t0) [40]
and
0.01 0 0 0
0.01 0 0

0
0 0 0.09 0
0 ) 0 0.09

T =

s} [41]

Equation (41) assumes the standard deviation in the
initial joint angles to be 0.1 rad and the standard deviation in
the initial joint velocities to be 0.3 rad/s. Finally it assumes
the uncertainty in the initial values of the state variables to be
uncorrelated.
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Step 5: Modeling of uncertainty in the system (1).

We chose
.235 0 (o] 0

- o .563 0 0

E(t) = ,  te[t ,t]. [42]
0 0 3.20 0
0 0 0 34.3

This choice is such that at each time t the standard
deviation of each component of k(t) equals 10 percent of the
maximum value of the corresponding component of f(xb(t),uo(t),t)
over the interval [t t. 3. The choice furthermore assumes the
noise on each component of X to be uncorrelated with the noise on
the other components of x.

Step 6: Modeling of measurement uncertainty.

We chose
le-4 0 0 0O

e(t) = |0 1e-4 0 0 te(t ,t ] [43]
0 0 9e-20
0 0 0 9e-2

in case the output equation (36) holds and we chose

le-4 O
e(t) = te[to,tf] [44]
0 le-4

in case the output equation (37) holds. This choice
assumes the standard deviation of the joint angle measurements to
be 0.01 rad. This low value reflects the fact that encoders, which
measure the joint angles, give very accurate results. The standard
deviation on the joint velocities, measured by tacho-generators is
chosen to be 0.3 rad/s. Again the measurement noise on each output
variable is assumed to be uncorrelated with the noise on the other
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output variables.
Part C: Linearization modeling.
Step 7: Establishing of the linearized model

According to (7c) we have to compute

af af ag
’ Bo(t) = ¢ G, (L) = .
ax(t)|o

a(t) =

ax(t)|o au(t)]|o

The numerical algorithm to compute the solution to the
digital IQG problem demands the evaluation of (7c) at a finite
number of time-instants, depending on the number of integration
steps performed during each sampling interval (Van Willigenburg
1990a). We perform the linearization (7c) numerically and chose 10
numerical integration steps during each sampling interval.

Step 8: Selection of Qo(t), Ro(t) and F'o

We chose
10.0 0 0
o) =|°% -0 0 teft,t 1, [45)
0 0 0.1
0 0 0 0.1
0.1 0
R (t) = te[t ,t 1, [46]
° 0 0.1 o f
100.0 0 )
F, = 0 10.0 0 0 [47]
0 0 1.0 0

0 0 0 1.0
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When we chose Qo, R0 and FB to be diagonal matrices, as
in (45)-(47) the feedback gain matrix is uniquely determined by
the ratios of the diagonal elements of these matrices. Note that
F =10Q, which reflects the fact that we want the final state to be
reached closely, which corresponds to the objective of the
time-optimal control problem. The other ratios were chosen
experimentally using simulation results as the ones presented in
the figures 5-8.

The simulation result in figure 5 is obtained with the digital
robot controller designed using the above design parameter values.
The simulation was performed using the uncertain dynamics (1)
determined by (29)-(35), (40)-(42), (37), and (44). We simulated
the white gaussian system and measurement noise using random
number generators. To demonstrate the effect of the white gaussian
system noise we included figure 9 which shows a response of the
robot when we only apply the ideal input, i.e. the open loop
control of figure 5b to the system. As expected, if we do not
compensate for deviations, the system behavior becomes highly
undesirable.

The ideal input-state response was obtained using the fifth and
sixth order Runge Kutta integration algorithm IVPRK from the IMSL
library (Van Willigenburg and Loop 1990) with a variable self
adjustable step size. This routine can not be used to integrate an
uncertain system since it repeats integration steps and compares
the results to determine whether the accuracy is appropriate.
Obviously the uncertainty prevents the results of repeated steps
to match. We used a fourth order Runge Kutta integration routine,
with a fixed step size equal to 1/10 of the sampling time. This
proved to be sufficient to closely reobtain the ideal state
response from the ideal input, demonstrating that the accuracy of
integration is comparable to that of the routine IVPRK.

Since (1) constitutes an uncertain system figure 5 shows just one
realization of the robot control system response. We have depicted
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another in figure 6. Finally figure 7 and 8 show two realizations
of the response of the robot control system when the complete
state is measured, i.e. where equations (37) and (44) are replaced
by (36) and (43).

The simulation results are merely presented to demonstrate that
the design "works" and results in a "proper" system behavior given
the uncertain dynamics (1). We do not intend here to specify what
"proper" is neither compare it to other results. As already
mentioned several times, the success of the digital LQG
compensator design, depends very much on the ability of the
engineer to translate the "real world" into the mathematical model
(1) and the criterion (9). What can be said is that given the
linearization (7) of the model (1), which approximately describes
the dynamic behavior of small deviations &x(t) and &u(t), and
given the criterion (9) the digital LQG compensator constitutes a
truly implementable optimal solution to the digital control
problem (7), (9).

Conclusions

Since automatic control is almost exclusively performed by digital
computers it is rather surprising that the proper adaptation of
the continuous-time LQG problem and solution, to incorporate the
digital nature of the controller, has drawn very little attention
over the years. In this paper we used a recently developed result
to numerically compute the solution to the digital LQG problem,
which does incorporate the digital nature of the controller
properly, to treat the design and computation of truly
implementable digital controllers for nonlinear uncertain systems.
The design procedure may be compared to the one presented by
Athans (1971) who treated the design of continuous-time
controllers for nonlinear uncertain systems. It has been
demonstrated in this paper that only the "mechanical" part of this
design procedure has to be adjusted, i.e. the design parameters do
not have to be adjusted!. We simply have to replace software to
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compute continuous-time controllers by software to compute digital
controllers. The software to compute the digital controllers has
been recently developed.

Both the design of continuous-time and digital controllers
presented in this paper is characterized by the fact that the
controllers need only a very small number of computations to be
performed on-line. Considering the control of robot manipulators,
which constitute highly nonlinear systems where the computational
burden on the computer is high since sampling times are often in
between 10 and 40mS, this property is crucial. Again it is rather
surprising that the design procedure based on the solution to the
LQG problem has found very little application in this area. In
this paper we computed digital controllers for an industrial
robot. Through simulation we demonstrated that the demand for
“small" sampling times, caused by in proper incorporation of the
digital nature of the controller in the design, can be relaxed
using our controller design procedure which incorporates the
digital nature of the controller properly.

Concerning the applicability of the continuous-time controllers we
have briefly mentioned the properties of differential
controllability and reconstructibility of the linearized dynamics
about the trajectory, called first order controllability and
reconstructibility. In case these properties are not met questions
remain how serious the proper behavior of the control system is
affected. In case of digital controllers we also have to consider
the effect of sampling on the controllability and
reconstructibility of the- linearized ‘ dynamics about the
trajectory. Results are known with 'regard to complete
controllability by means of piecewise constant controls (Furi et
al. 1985), furthermore the reconstructibility of discrete-time
systems is a well known property. However these properties are
defined over an infinite time-interval. Our concern is with
properties defined over a finite time-interval. This presents a
new area of research.
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