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Compensatability and Optimal Compensation
of Systems with White Parameters

Willem L. De Koning, Member, IEEE

Abstract—The optimal compensation problem is considered
in the case of linear discrete-time systems with stationary white
parameters and quadratic criteria. A generalization of the notion
of mean square stabilizabiflity, namely mean square compensata-
bility, is introduced. It is shown that suitable mean square
compensatability and detectability conditions are sufficient, and
necessary in general, for the existence of a unique optimal mean
square stabilizing compensator. Tests are given to determine if
8 system is mean square compensatable or not. It is indicated
how to calculate numerically the tests and the optimal mean
square stabilizing compensator. The results are illustrated with
examples.

1. INTRODUCTION

N this paper linear discrete-time systems with white

parameters are considered. There are mainly two reasons
why discrete-time systems with white parameters are impor-
tant. Firstly, these systems arise naturally in the field of
digital control systems where some of the parameters may be
white such as the sampling period [1]}, the controller parame-
ters due to the finite word length of the computer [2], or the
parameters of the plant [3]. In all these cases it is possible to
convert such a digital control system to an equivalent
discrete-time system with white parameters [4], [5]. Also
inherent discrete-time systems, such as economic systems,
may have white parameters. Secondly, the parameters of an
equivalent or inherent discrete-time system may be assumed
to be white for the purpose of a robust control system design.
It is well known that the standard LQG design does not lead
in general to a robust control system with respect to parame-
ter deviations [6]. A possible approach for robust control
system design is by modeling the uncertainty in the parame-
ters as white stochastic fluctuations {7], [8}. The advantage of
a model with white parameters is that it fits naturally in the
LQ design context. Therefore, this approach seems promis-
ing for nonconservative robust control system design with
respect o structured parameter variations.

Here we will study the optimal dynamic output feedback,
called optimal compensation, of linear discrete-time systems
with stationary white parameters and where the criteria are
quadratic. In the case of deterministic parameters the optinial
compensation problem leads to separate control and estima-

tion problems. In the stochastic parameter case this is no
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longer true [9]. Control and estimation has to be done
simultaneously by the compensator. The question arises as to
the conditions for which an optimal compensator exists
and the control system is stable in a mean square sense.

The optimal compensator problem in the case of white
parameters has been studied in {10]-[12] for continuous-time
systems, and in [13], [14] for discrete-time systems. They
derive necessary conditions for the existence of an optimal
compensator in various cases. Sufficient conditions for the
existence of an optimal mean square stabilizing compensator
are derived in [10]. However, the results are restricted to a
very special class of systems. In [15] sufficient conditions are
given for mean square stability of the compensated system.

In this paper we introduce a generalization of the notion of
mean square stabilizability [16], called mean square compen-
satability, for linear discrete-time systems with white parame-
ters. A system is called mean square compensatable if there
exists a mean square stabilizing compensator. The relation of
mean square compensatability with the existing notions
of mean square stabilizability and detectability [16], [17] is
investigated. It is shown that suitable conditions of mean
square compensatability and mean square detectability are
sufficient, and necessary in general, for the existence of a
unique optimal mean square stabilizing compensator. The
above mentioned conditions coincide with the usual stabiliz-
ability and detectability conditions if the parameters are
deterministic, i.e., there is no uncertainty in the parameters.
Moreover, we give two tests, explicit in the system matrices,
for systems with white parameters to be mean square com-
pensatable or not. One of these tests is based on the maximal
mean square stability of the closed-loop system achievable
through a compensator, which can be conceived as a measure
of mean square compensatability rather than merely a test.
Also we indicate how to actually calculate numerically the
compensatability tests given a system, and the optimal stabi-
lizing compensator, if it exists, given a system and a crite-
rion. It should be noted that a sufficient and necessary test for
mean square detectability is already given in [17]. The results
are illustrated with some examples.

II. COMPENSATABILITY

For easy reference we shall first repeat some results from
[16], {17] concerning mean square stability, stabilizability,
and detectability.

Consider the system

i=0,1,"", (1)
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where x;eR" is the state and ®; is a real matrix of
appropriate dimensions. The process {®$,} is a sequence
of independent random matrices with constant statistics and
the initial condition x, is deterministic. System (1) is charac-
terized by (®;). Let ms denote mean square and let an
overbar denote expectation.

Definition 1: (¥;) is called ms-stable if || x,]|2~ 0 as
i— oo forall x,.

Let S” denote the linear space of real symmetric n X n
matrices and define the linear transformation A: " — S” by

AX =9"X®, XeS" (2)

where index i is deleted without ambiguity because AX is
independent of i. Let p denote spectral radius and I the
n X n identity matrix. Then | x,||*= x]x;= xJ A‘Ix, and
| AT = || A"/ > p(A) as i— oo. Thus, p(A) is
a measure of ms-stability of (®;). In particular, ($,) ms-
stable ¢ p(A) < 1. If &, is deterministic and constant
then ms-stability is identical to stability in the usual sense.

Consider the open-loop system

Xip = ®,x; + Tu,, i=0,1,---, (3)

where x;€ R" is the state, u,e R™ the control, and &,;, T}

are real matrices of appropriate dimensions. The processes

{®,;} and {I';} are sequences of independent random matrices

with constant statistics and the initial condition x, is deter-

ministic. System (3) is characterized by the pair ($;, T).
Consider the static state feedback controller

u; = —Lx; (4)

where L is a real matrix of appropriate dimensions. Then
from (3) we have the closed-loop system

Xipy = (%~ TL)x;. (5)

Definition 2: (®;,I;) is called ms-stabilizable if there
exists an L such that (; — T L) is ms-stable. 0

We have (®;) ms-stable = ($,,T,) ms-stabilizable. If
$, =% and I, = I' where ®, I' are deterministic and con-
stant then ms-stabilizability is identical to stabilizability in
the usual sense. It is well known that IT' invertible =
(®,T) stabilizable. However, T' invertible = ($,,I') ms-
stabilizable. For instance, take the scalar case ¢, = ¢,, I' =

v, L =1, and v # 0. Then FH= (¢; — 71)2x—,.2= (¢ —
vD? + ;?]x_,z, where d;,- = ¢, — é. The expression between
brackets can never be made smaller than ¢~>_,2

Consider the system

Xi = ®;x;,

yi=Cix;, i=0,1,"--,

where X;€ R" is the state, y,€ R’ the observation, and &,
C; are real matrices of appropriate dimensions. The pro-
cesses {®,{ and {C,;} are sequences of independent random
matrices with constant statistics and the initial condition x, is
deterministic. System (6) is characterized by the pair (¥;, C,).

Definition 3: (®,, C,) is called ms-detectable if || y;||>= 0,
i=0,1, -, implies that || x;||>= 0 as i = oo. O

Using the transformation A defined by (2), we have
($,, C;) ms-detectable ¢ (xJA'C"Cx, =0, i =0,
1,-+ = x5 A'lxg— 0 as i — o). Also we have (®,) ms-
stable = ($;, C;) ms-detectable. If ®, =¢ and C;,=C
where &, C are deterministic and constant, then ms:
detectability is identical to detectability in the usual sense.
Furthermore, C invertible = (®;, C) ms-detectable.

Suitable conditions of ms-stabilizability and ms-
detectability are sufficient, and necessary in general, to solve
the optimal state feedback control problem in the white
parameter case. In order to solve the optimal compensation
problem, the condition of ms-stabilizability appears to be too
weak, contrary to the deterministic parameter case. If the
parameters are stochastic the operations of control and esti-
mation are not independent of each other. This interaction
should be expressed in a generalized stabilizability condition.
Therefore, we introduce the notion of ms-compensatability.
In this connection it is interesting to note the following. If

;=® and T, =T then (&,T) stabilizable & (&7, T'7)
detectable. This duality of stabilizability and detectability
does not hold in the stochastic parameter case. In fact,
ms-stabilizability is a stronger property than ms-detectability
in the sense that (®;, I';) ms-stabilizable = («)(®7, I‘,-T) ms-
detectable. This expresses the fundamental fact that the pres-
ence of uncertainty in the system in the form of stochastic
parameters makes stabilizing more difficult, while detecting
may even be easier.

Consider the system

(7a)
(7b)

Xipy = O;x; + Tu,,

y,-=C,.x,-, i=0,1,"‘,

where x;€ R" is the state, u;€ R™ the control, y;e R’ the
observation, and ®;, I';, C; are real matrices of appropriate
dimensions. The processes {®;}, {I';}, {C;} are sequences of
independent random matrices with constant statistics and the
initial condition x, is deterministic. System (7) is character-
ized by the triple (®;, I;, C;). Consider the dynamic output
feedback compensator

(8a)

(8b)

X, = Fx, + Ky;,

u, = —Lx,, i=0,--,
where X;€ R" is the compensator state and F, K, L are real
matrices of appropriate dimensions. The initial condition %,
is deterministic. Compensator (8) is characterized by the
triple (F, K, L). Now from (7) we have the closed-loop

system
Xivr | _ ¢ -TLLifx )
2| T lkC, F |a)
Define x; and ®; by
, x;] . &, -TI,L
s iZ|kc, F |




DE KONING: COMPENSATABILITY AND OPTIMAL COMPENSATION

then (9) becomes
i=0,1,"", (10)

where {®;} is a sequence of independent random matri-
ces with constant statistics. The initial condition xj is
deterministic.

Definition 4: (®,, T;, C,) is called ms-compensatable if
there exists an F, K, and L such that () is ms-stable. ()

A number of properties concerning ms-compensatability
are now stated.

Theorem 1:

’ — 7ot
Xip = P1x1,

a) (®;) ms-stable = (¢, T}, C) ms-compensatable.

b) (&;, T, C,) ms-compensatable ¢ (&7, C/, T[") ms-
compensatable.

¢) (®,, T}, C,) ms-compensatable = (¢, T}) and (®], C[)
both ms-stabilizable.

OIf &, =@, I,=T, C;=C, then (,T,C) ms-
compensatable ¢ (&, T') and (&7, C”) both stabilizable
in the usual sense.

Proof: Part a) is clear by choosing F =0, K =0,
L = 0. Then (®;) is ms-stable. Part b) follows from the
structure of ;7 and the fact that (&]) ms-stable & (®;7)
ms-stable. Part ¢) will be proven in Section III of this paper.
Finally part d).

Choose F = & — I'L — KC and denoting the n X n zero

matrix by O, then

[1 e [ @ —I‘L][I <]
I -I]IKC F I -I
_ [q: -TL rL ]
- e $ - KC
which proves this part. O

Note that if T; =T, C;= C, then T, C invertible »
($,, T, C) ms-compensatable.

In contrast with ms-stabilizability we will not need a new
notion for ms-detectability. However, it will appear conve-
nient to introduce the following definition concerning
detectability of a triple instead of a pair of random matrices.

Definition 5: (®;, T;, C)) is called ms-detectable if (®;, C;)
and (¢7, IT) are both ms-detectable. O

We have the following properties concerning ms-
detectability.

Theorem 2:

a) (®,) ms-stable = (®;, C;, I';) ms-detectable.
b) (¢, I, C;) ms-detectable & (&7, C/, T/) ms-
detectable.
¢)If C;=C, T;=T then C,T invertible = (®;,C,T)
ms-detectable.
dIf =@, I=T, C;=C then (¢,T,C) ms-
detectable (&, C) and (#7,T'7) both detectable in
the usual sense.
Proof: Follows immediately from Definition 5. O
If $, =&, I;,=T,and C; = C then, from Theorem 1 and
2, (®,T, C) ms-compensatable ¢ ($, I', C) ms-detectable.
This duality of compensatability and detectability does not
hold in the stochastic parameter case. From Theorem 1 and
Definition 5 it follows that ms-compensatability is a stronger
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property than ms-detectability in the sense that ($;, T, C))
ms-compensatable = («)(®;, I';, C;) ms-detectable.

In the next section we will show that under suitable
compensatability and detectability conditions there exists a
unique optimal mean square stabilizing compensator.

III. OpTiIMAL COMPENSATION

Consider the system
i=0,1,-,
i=0,1,---,

(11a)
(11b)

where x,€R”" is the state, u;€ R™ the control, y;€ R’ the
observation, v,€ R" the system noise, w;€ R’ the observa-
tion noise, and &, T;, C; are real matrices of appropriate
dimensions. The processes {®,}, {I';}, {C;} are sequences
of independent random matrices and {v;}, {w;} are
mutually independent sequences of independent stochastic
vectors with constant statistics. Initial condition Xx, is
stochastic with mean X, and covariance P, and is indepen-
dent of {®, T,,C;, v;, w;}. Moreover, &, T}, and C; are
independent of v;, w;, I # j and uncorrelated with v;, w;.
The processes {v;} and {w,} are zero-mean with covariances -
V and W, with ¥V = 0 and W = 0.
We choose as controller the compensator

i=0,1,"",
i=0,1,"",

Xig1 = ®x; + Tiu; + v,

yi=Cixi+w,

Xipy = I%; + Ky, (12a)

u,= —L%,, (12b)

where ;€ R" is the compensator state and F, K, L are real
matrices of appropriate dimensions. The initial condition X
is deterministic. A compensator is called ms-stabilizing if
| x| and || ;|| converge as i = o to values which do not
depend on X, and X,. The optimal compensation problem
is to find the optimal ms-stabilizing compensator (F*, K*,
L*) which minimizes the criterion

1 N-1
o.(F,K,L) = I\}i_r’n —E{ ZO (x7ox; + u,.TRu,.)} (13)
=] ,‘=

where Q and R are real symmetric matrices of appropriate
dimensions with Q = 0 and R = 0, and to find the minimum
value o = o (F*, K*, L").

The closed-loop system may be described by

Xivr| _ ¢, —LL(|x; L (14)
Xiv KC; F X; Kw; |’
Define

X; v ®, -T.L
X\ = vl o= , P! = s
=g T kw "t T ke, F.

. 14 2}
“1e KwkT

then (14) becomes
X =®xi+v, i=0,1,"-, (15)

where {®;} is a sequence of independent random matrices
and {v;} is a sequence of independent stochastic vectors.
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Initial condition xj is independent of {®/, v;}. Moreover, ®;

is independent of v, i # j, and uncorrelated with v;. The

process {v}} is zero-mean with covariance V. Let P/ denote
x!T, then from (15)

rpryr T ’

= PeT+ V.

(16)
Suppose (®/) is ms-stable, then [18] the compensator
(F, K, L) is ms-stabilizing and P’ = lim,_ P/ exists,
P’ =0, and P’ is the unique solution of the equation

PP=oPoT+V, P’ eS*".

(17)

Furthermore, criterion (13) exists and may be written as

0.(F,K,L) =t (Q'P) (18)
where Q' is defined by
,_[e e }
¢ [e L'RL}

Therefore, we restrict our attention to the following set of
admissible compensators:

C

adm

= {(F, K, L)|(#®;) is ms-stable} .

Since the value of o (F, K, L) is independent of the internal
realization of (F, K, L), we may further restrict our atten-
tion to the set of minimal compensators

Clhim = {(F, K, L) € Coyp|(F, K) reachable,
(F, L) observable }.

The optimal compensation problem may be restated as to
find the optimal compensator (F*, K*, L*)e CJ,, which
minimizes (18) subject to (17), and to find the minimum
criterion value o = o (F*, K*, L*%).
Define the linear transformation A”: $*" = S2" by
AX=9"Xd, XeS§” (19)
then ($/) ms-stable @ p(A") < 1. Because the eigenvalues
of A’ depend continuously on (F, K, L), the set C.y,, is
open. Therefore, we may apply the matrix minimum principle
[19] to find necessary conditions for the solution of
the optimal compensation problem. To that end, define the
Hamiltonian H by

(@ PoT
+v' - P)s| (20)

H(F,K,L,P',§)=uw[QP +

where §’ € S?" is the Lagrange multiplier. Then the neces-
sary optimality conditions are

oH 3§ ———

— = —tr(¥PP'S) =0 (21a)
oF  OF

) 2 S E——

— = —tr(PPYTS+V'S) =0, (21b)
dK 0K

on_ 2 P PYTS+QP)=0, (21
—_— = _'t r ’ ’ ’ 4 ’ .

oz~ oz Q'P) =0, (o)

=37S¥ +Q -5 =0, (22a)

ap’

oH ———
. =‘I”P1(§,T+ V- P =0

as’
where §’ = 0 and P’ = 0. Partition S’ and P’ as

S SIZ} p = P Py

(22b)

S =
Sh S, PhL P

according to the partitioning of ®; and define S = §, - §,,
S = Sz, P =P, ~ P,,and P = P,. Note that P = hm,_,m
%, %], where %, =x,— %, and P =lim,_., %, £,%7. Define
also<I>—‘IJ——<I> F—F—I‘andC C; - CThenm
[13] it is shown that (212) may be transformed to
F=%-TL-KC (23a)
and, assuming that I'; and C; are independent, (21b), (21c)
may be transformed t0 ~ A~
+ERT

»_ — +
k {&PCT(CPCT + W + CBCT)
—_— === Y. - M
L = (T7ST + R + F757) (TF7s%+ 7S G)23¢)

where + denotes the Moore-Penrose pseudo-inverse
and where $=0, §,, = Sh = -S§, P=0 and P, =
Pl = p. Moreover $>0and P> 0dueto the minimality
assumption in C,7,, [20]. The fact P, = P implies that
X%,;27— 0 as i > . We may substitute F, K, and L from
(23) into (22) which gives six coupled nonlinear n X n
matrix equations in S,, S,, S,,, P,, P,, and P,,. After
finding a possible solution of these equations we may calcu-
late £, K, and L from (23). However, the existence of F,
K, and L does not guarantee that the compensator (F, K, L)
is a ms-stabilizing one and if so, that it is the optimal one.
Before investigating this issue we make some remarks.
Define the linear transformation B’: §?" = §?” by

(23b)

BX=0XT = XeS¥. (24)

Using A’ and B’ (22) may be written as
S =AS8+Q, (25a)
P =B'P + V. (25b)

Equations (23) and (25) form together the necessary optimality
conditions. _

Using F=® — 'L — KC, (25) may be transformed to
(13}

S=(®-TL)"S(® -TL) +Q

+(% - KC)"5(8 - KC)

+ LT(R + T'7ST) L, (26a)
§=(%-kC)" 83 - KC

+ LT(pST + R + T78T) L, (26b)
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P= (& - KC)P(%

kc)”
+V+(®-PL)PE-TL)

+ K(W + CPCT)KT, (26¢)
p=(3-TL)P(Z-TL)"
+ K(cPCT + W+ CPCT)KT.  (26d)

Note that (23), (25) and (23), (26) are equivalent. They will
be used accordingly, as it suits us.
Also using F = & — 'L — KC, compensator (12) may be
written as
R = 8%, +Tu,+ K(y, - (27a)
- Lx;. (27b)

The compensator state X; given by (27a) is precisely the
optimal linear estimator of x; given the control (27b) and
the observations y,,***, ¥;_,, and P given by (26c¢) is the
estimation error covariance, as { — oo [18].

Using the partition of Q’ and P’, the criterion value (18)
for the optimal (F, K, L) is given by

=tr (Q' P
which from (22a) may also be written as
—uw(V'S) =u[VS+ (V+K*WK*")S]. (28b)

If ;,=¢, I'=T, and C;=C, where &, I', C are
determmnsnc and constant, then (23), (26) reduces to the
well-known wuncoupled control and estimation algebraic
Riccati equations, respectively, (23c), (26a) and (23b), (26b),
and the superfluous equations (26b) and (26d).

Necessary conditions for the existence of an optimal ms-
stabilizing compensator are stated above. What we want are
sufficient conditions which are necessary in general. In order
{o state the main result in this direction, we need the following
two lemmas.

Lemma 1: Either R >0, W >0,
ms-detectable, or Q >0, V> 0= (¥,
detectable.

Proof: We will prove i) elther R >0, (¥, 0" f) ms-
detectable, or Q >0 = (®;, Q0 ) ms-detectable; and ii)
either W > 0, (&7, V%) ms-detectable, or V> 0= (¢,
V’7) ms-detectable. Only the first implication will be proven.
The second one goes analogously. Note that ¢;, A’, and Q
depend on F, K, and L. If F=0, K—O and L =0
we will indicate this with a lower index 0. Referring to
system (7) we have x),TA,Qxp = x5 A'Qx,, and x("AGT
xy = xg A'Ix,, where I’ is the 2n X 2n identity matrnx
Thus, using the first result below Definition 3, (®;, O )
ms-detectable = (‘1>0 i» Qo? 1) ms- detcctable Furthermore,

xTAQ xy = = E{xTOx, + uTRu;}, u, = —LX; Sup-
pose xOTA“Q’ x4 = 0, then from E{ uTRu 1 =0 and R > 0
we have that u; = 0 almost surely [21]. So F, K, and L
may have any value including zero. Now let (®4 ;, Q57 ) be
ms-detectable. Then x,74"'Q’ xj = 0, Vi = x,TAY Q) x5 =
0, Vi=x;TAol'xg—0, as i— o= xgTA''I' x5 — 0 as
i— oo. Thus, (®;,Q’ 2) is ms-detectable. Now suppose

&),

u; =

= u[QP + (Q+ L*"RL*) P| (28a)

(<1>., vi, Q)
L,Q%) ms
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O > 0. Then there exists « > 0 such that aQ’ = I'. Hence,

xoTA''T x < aon”Q xi,. Therefore, x4TA"'Q’'x5 =0,
vi =»x'TA”I’ =0, Vi. So (®;, Q'?) is ms-detectable.
O

Note that from Definitions 5 and 3, (<!>’V’l Q’%) ms-

delectable means that the fictitious systems x, o = ®ixi,

yi = Q'ix;, and xj., =®/"x;, ¥ = V’ix; are both

ms-detectable.

Define 7, T, C{*, and ®;* by

o =3 + ad;, (29a)
=T +af}, (29b)
¢t =C+ aC; (29¢)
g | 2 TOE (294)
i T |kcy F

Note that ) = 3, 1= T,C?= C,9°= &’ and P!

I"—I‘ C'—C <I>"=<I>’

Lemma 2: (<I>,, I‘,, C;) ms-compensatable = (%7,
Cf) ms-compensatable, o € [0, 1], and (&; T}, C)
ms-detectable = (@2, ', Cf) ms-detectable, « € [0, 1].

Proof: Consider closed-loop system (9) where x;, &;,

T,, C;, and ®; are replaced by, respectively, x;%, ®7, I'7,
cs, and ®;“. Using the definition of ®;* it 1s easy to see
that &% = & + o). Thus | x;°||%= [|2"x;]* +

o &) - @4 x4||%, hence || x;*||? is an increasing func-
tion of o. So if (®;*) is ms-stable for some «, then it is also
ms-stable for a smaller o, which proves the first part. Now
consider system (6) where x;, y;, ®;, and C; are replaced
by, respectively, xf, y{, &7, and C*. Then ms-detectability
of (®7,Cy) follows from | y? 2= 0= || »;i*= 0 and
Ixe2= | X; l|2. A similar argument leads to ms-detectability
of (827, 7). 0

We are now in a position to state the solution of the
optimal compensation problem. From now on we assume that
¢,, I, and C; are mutually independent. Independence of T}
and C is needed in order to use (23b), (23c). Independence
of ®, from T; and C; is to simplify the presentation. Inde-
pendence of <I’,, I';, and C is not a severe assumption in the
context of robust control , where white parameters are
used to model the uncenainty in the parameters. Now define
the nonlinear transformation Cy ;: $" X 8" x §" x §" =
S"x 8" x §" x §" by

Ce.LX= (<I>TX1<I> - U'(PTX,T + R+ T7X,T) L+ Q

+37x,% + CTKTX,KC,
(% - KC)" X,(% - KC)
+L7(PTX,T + R + T7X,T)L

2X,87 - K(CX,CT + W + Cx,CT)KT™

+V+ X837+ TLX,LTT,
(3 - TL)Xx,(3 -TL)" + K(Cx,CT

+w+ Ex,CT)KT) (30)
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where X = (X, X,, X3, X,), X, X5, X5, X,€5". Also
define Fy, Ky, and Ly by

Fy=%-TLy~- K,C, (31a)

- —_— ———— —_— T ~ +
K, =3X,C7(CX,CT+ W+ Cx,CT) , (31b
X 3 3

- .~ +_ p—
Ly=(T"XT+R+ I7x,I) T7x@  (3l¢)
and the nonlinear transformation C: $” X §" x §" x §" =
S"x S"x §"x S" by

CX=Cyx .. X. (32)

xLx
Note that (S, §, P, P) = C(S, S, P, P) is equivalent to (23),
(26), where (26a), (26c) are written slightly different for
convenience later on. Now consider (X;, Xy;, X35 Xg) =
Cci(0,0,0,0), i=0,1,---. If &, =&, I,=T, and
C, = C, where ¢, T, C are deterministic and constant, then
X, and Xy for i=0,1,--- are the iterations of the
well-known uncoupled control and estimation Riccati equa-
tions with initial value ©. It is well known that { X,;} and
{ X,,} are monotonic in the sense that X; < X,; and X;; <
Xy, if i<, This property may be used to prove conver-
gence of { X,;} and {X5;}, which gives us an easy way to
calculate a solution of the algebraic Riccati equations. How-
ever, in the stochastic parameter case { X,;} and { X;;} are
not monotonic due to the coupling between the correspond-
ing equations. Fortunately, it is still possible to prove conver-
gence, using the homotopic continuation method. This method
is in short: first solve an easy ‘‘similar’’ problem, then
continuously deform this problem into the original problem
and follow the path of solutions as the easy problem is
deformed into the original problem. Topological degree the-
ory tells us under what conditions the number of solutions
along the path keeps constant. For more information we refer
to [22], [23). Call (X, X,, ) nonnegative definite if
X, Xy, =20

Theorem 3: Assume that (®,, T;, C;) ms-compensatable
and assume that either R >0, W >0, (&, V%, Qé)
ms-detectable, or Q > 0, ¥ > 0. Then Y = lim,_, C'(©,
O, O, O) exists, Y is the unique nonnegative definite solu-
tion of the equation X = CX, (F* K', L*) = (Fy, Ky,
L,)and

of = [QY; + (Q + LLRLy) Y]
=t [VY, + (V+ KyWKT)Y,]

where Y = (Y,,Y,, Y5, Y), Y, Y,, Y3, Y, €S"

Proof: Because (&,, I;, C;) is ms-compensatable, there
exists a compensator (F, K, L) such that (&/) is ms-stable.
Thus, the set CI,. is not empty. Hence, the necessary
optimality conditions (23), (25) has a nonnegative definite
solution (S’, P). Now suppose (S’, P) is such a solution.
Then we may conceive (S’, P?) as a solution of (25) for
certain fixed F, K, L. Also from Lemma 1 we have that
(%], V'g, Q’é) is ms-detectable. Now we have a solution of
(25a) and (%], Q’§) is ms-detectable. Then from [17] it
follows that (®/) is ms-stable. We may also have used that

(8, P’) is a solution of (25b) and that (<I>,5T, V'i) is ms-
detectable. This leads also, from [18], to ms-stability of (&;).
Therefore, under the conditions of the theorem all nonnega-
tive definite solutions of (23), (25) correspond to compen-
sators (F, K, L)e C™,.. That leaves us to prove that (23),
(25), or equivalently X = CX, has only one nonnegative
definite solution Y and that Y = lim,. . C'(©, 0,0, 0).
Replace in (23), (25), (30), and (31) &;, T}, C;, & by,
respectively, &7, I, C5, and ®;* defined by (29). Replace
the transformation C in (32) by C®. Denote the parametrized
equation Y* = C*Y® by H(Y*®, o) = 0, where Y ® denotes
the nonnegative definite solution of X = C*X with parame-
ter . Now for o = | we have the original stochastic param-
eter case, and for o = O the deterministic parameter case,
i.e., the optimal compensation problem for the system
(3, T, C). The function H is called a homotopy and we may
follow the solution path Y* if a goes from 0 to 1. Now
(®;,T,, C;) is ms-compensatable and (%], V'%, Q’%) is ms-
detectable, thus from Lemma 2 (&7, I'%, C7) is ms-
compensatable and (®;°, V’%, Q’%) is ms-detectable for o €
[0, 1]. Hence, using topological degree theory, the number of
ms-stabilizing solutions Y is constant along the solution
path if « goes from 0 to 1. For the precise conditions we
refer to [22], [23]. It is well known that Y is unique, thus
Y' is also unique. Moreover, it is well known that Y° =
lim, .., C%(©, 0,0, ). Then, using similar arguments as
above, also Y! = lim,_, c'(o,0,0,0). 0

From Theorem 4 it will be clear that the conditions of
Theorem 3 are not only sufficient but also necessary in
general. If ;= &, T, =T, and C; = C, where &, T',C are
deterministic and constant, then Theorem 3 gives the well
known solution of the usual LQ optimal control problem with
infinite horizon and long-term average criterion. Note that
for ms-stability of (®;) we need only ms-detectability
of (&, Q%) or (&7, V'}). Thus, according to the
proof of Lemma 1, it is needed that i) either R > 0,
(®;, Q%) ms-detectable, or Q > 0; or ii) either W >
0, (<I>,-T, V%) ms-detectable, or ¥V > 0.

Finally, in this section we prove part c) of Theorem 1 in
Section 1I.

Proof of Theorem Ic): (®,,T;, C;) is ms-compensatable,
thus (26) has a nonnegative definite solution for some K and
L and for any Q =0, V= 0. We may write (26a) and
(26¢) as

S=(®-TL)'S(®-TL)+Q+AQ, AQ=0,

P=(%-KC)P(® —KC)" + V+AV, AV =0.
Choose 0 >0, V>0 then Q+AQ>0, V+AV>0
and thus (,,(Q + AQ)?) and (87, (V + AV)?) are both
ms-detectable. Hence, (&, — I;L) and (®] — C/KT) are
both ms-stable [17], [18], thus (®;, T}) and (¥, C]) are both
ms-stabilizable. O

Note that the proof of Theorem Ic) is constructive in the
sense that ms-stability of (®;) for F = ® - TL - KC and
certain K and L implies that (®; — I;L) and (®; — KC) are
both ms-stable. Also note that in the proof we do not use any
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assumption concerning mutual independence of &, T,
and C,.

IV. COMPENSATABILITY TESTS

First we may state the following result concerning ms-
compensatability and convergence of C/(©,0,0,0) as
i— oo,

Theorem 4: Assume that either R >0, W >0, (¢,
Vi, Qi) ms-detectable, or Q > 0, V > 0. Then ($,, T}, C))
ms-compensatable & Ci(0, 0,0, ©) converges as i = o,

Proof: By Theorem 3, (&;, T}, C;) ms-compen-
satable = C/(©, ©, ©, ©) converges as i — 0. The assump-
tions in this theorem are not needed here. Now suppose
Y = lim,_, C(©,0,0,0) exists. Because C'*'(0,0,
0,0) = CCY(©, 0, O, ©) one has, taking the limits, Y =
CY. Also Y = 0 by definition. Hence, (25) has a nonnega-
tive definite solution for certain fixed F, K, L. Also from
Lemma 1 we have that (®;, V"5, Q’%) is ms-detectable.
Thus, using the same arguments as in Theorem 3, (®;) is
ms-stable, and therefore (¢, T, C;) is ms-compensatable.

O

From Theorem 4 we have the following sufficient and
necessary test, explicit in the system matrices, for systems
with white stochastic parameters to be ms-compensatable.

Compensatability Test 1: Choose Q = V=1 and R =
W = 0. Then (&, T, C;) ms-compensatable & C'(O,
0, ©, ©) converges as | = . ]

The above test determines if ($;) can be made ms-stable
by some F, K, L, or equivalently if p( A) can be made
smaller than 1, by some F, K, L. An interesting problem is
to determine the minimal value of p( A’), or equivalently the
maximal ms-stability of (®;), achievable through F, K, L.
That would give us a measure of ms-compensatability rather
than merely a ms-compensatability test. To investigate this

issue consider the system
x (33a)

(33b)

=&,x;, + Tu,,
i=0,1,---,

i+
yi=Cix,,
which is the same as system (11) except that V' = 0 and
W = 0, and the compensator

(34a)
(34b)

X =F%+K,y,
u;= —-L;%,, i=0,1,--,
which is the same as compensator (8) except that it is time
varying now. The closed-loop system is given by
i=0,1,"-, (35)
which is the same as (10) except that &; is now defined by
» = @, ~TL,;
' K.C; F;

’ _ 2N
Xipr = ®ixi,

where the statistics are not constant. Furthermore, the linear
transformation A’: S$*” — $2" is defined by

AX = ®TX®, XeS¥ (36)

which is the same as (19) except that A’ depends on i.
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Finally, define g( A" by

5(4) = min () (37)
where A’ is defined by (19). Now suppose X, is chosen such
that all modes of (®,) are excited at i = 0 and we choose a
sequence of compensators (Fy, Ky, Lg),***, (Fy_ 1, Kn_1»
Ly _,) such that the value of || x[|? is as small as possible.
Then we have from [16] lim_ . (|| xn[?'Y = 5(A4").
Therefore, in order to determine 5(A") we consider the
problem of minimizing || x|, which leads automatically to
time varying compensators. From (35) we have

Pl =% PeT

i

(38)

Let I” denote diag(Z, ©). Choose P§ = x{x,7= I” which
represents the fact that all modes of (®;) are excited at / = 0.
Define FN = {F,,--+, Fy_,}, K" =1{Ky, "+, Kn_\},
and LN = {L,, -+, Ly_,} and the criterion

In(FY KN LN) = |xn]? = w (P y) = uw (I7P).
(39)

All compensators (F;, K;, L,) are admissible, ms-stabilizing,
or not because N < co. Now minimizing || xy||* is the
problem of finding F~, K¥, LN which minimizes (39)
subject to (38). Let J,’S denote the minimal criterion value,
then lim _ . (J5)'/~ = 5(A"). To solve this problem we
may apply again the matrix minimum principle [19]. Define
the Hamiltonian H; by

H(F, K, L, P, S;,)) = w [(8/P/&;T - P, ],

i=0,---,N=~1 (40)
where S, -, S\ € S?” are the Lagrange multipliers. Then
the necessary optimality conditions are

aH; a T
o rpr& T -
3 ST (e P/@'7s;,,) =0, (41a)
o4, _ 8 (2" Py 7s 0 41b
—— = 'Prd’ ’ =0,
BK,- aK, r i 1+2) ( )
dH, a3 B —
— = —u(®'P/¥TS,,) =0, 41
6L,- aL, ( i l+l) ( C)
al_l‘ ' T ’ ’ ’ ’
EY> =®"785,,, ¥ =S, =S5 - S
atr (1" Py)
N ———— = 1", 42a
e (422)
aHi rpr T . ‘ ’ ’ "
—as‘{+'=<IJPi<I> - P =P ,—-P ,P,=1I",

i=0,,N~-1 (42b)

where S;,,, P/ =0, i=0,---, N— 1. Partition S;, P/
and define S, S‘i, P, 13,- as in Section III, where the index i
is added. Also use the decompositions of ¢;, T}, C; and
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define the linear transformation B;: $2" = $%" by

B/ X =% X®7, XeS* (43)
which is the same as (24) except that B; X depends on i.
Then in essentially the same way as in Section IV we may

transform (41), (42) to

F,=3% -TL,- K,C, (44a)
K;=3PCT(CPCT + CPCT " (44b)
L= (T75,, [ + T75,,,T) T7s,,,&, (44c)
S;=AiSi,  Sy=1" (45a)
P, =B/P, Py=1I", =0, N-1. (45b)

Equations (45a) and (45b) are coupled via (41) and together
they form a two-point boundary-value problem which is in
general very hard to solve. However, it will appear that these
equations can still be used to determine 5( A"). First observe
that (44), (45) have the same structure as (23), (25)
where @ =0, R=0, V=0, and W = 0. Hence, we may
transform (45) to

S;=(®- FLI)TSH-I((I) -TL))

1

+(3 - K,0)'$,(3 - K,0)

+ L'T7S,, FL,, (46a)
$,=(3-K,C)"$,,,(% - K,C)
+ LT(T7S,, T + T75,, T)L;,  (46b)
P, =(®-KC)P(®-K,C)"
+(3-TL)B(3-TL)"
+ K,CPC'K], (46¢)
B, =(3-TL)B(®3-TL)"
+K,(CPCT + CPCT)K] (46d)
fort—O---,N—landwhereS =1, Sy = O, Py=1,

P, = ©. Of course, we have §;,,, Siv» Py P20, i=
0,---, N — 1. Now define the nonlinear transformations
Dg , D: S"x 8" x §"x 8" = 8" x §"x §" x §”
which are exactly the same as, respectively, Cx , and C
except that g=0, R=0, V= 0 and W =0. Then
(S, Si, Piyys ,+|) =D(S; 1, Siv1s P, P) is equivalent to
44), (46)

Theorem 5: Suppose (Y,;, Y, Y3, Yy) = Di(1, 9,
1, ©). Then 5(A) = p(B) = lim,_ {tr (¥, + Y;)1"/".

Proof: First note that from (36) and (45) we may write

T = xgTSyxy = (ISy) = (S, ).

Thus, using S; o = Sp + .§0 and P, y = Py + ISN, we have

JE=tr(Sy+ 8,) =t (Py+ Py)

1 N A
Etr(SO+SO+PN+PN).

It is easy to show that

\/N

€
I

I A A
lim | = tr (Sy + So + Py + Py)
N-o | 2

. 1/N
1\1/1-[20 [tr (S, + P)] .

Now suppose for a moment that the initial time is not 0 but
M; then

w= lim [tr(Se+ Py)]""" ™= tim [t (v, + ¥5)]"".
o e
Hence
F(A) = lim (75)"" = 1im [ir (v, + ¥3,)]'".
— oo j— 00

Finally because p( A") = p(B’) we have also 5( A" = p(B").
]

From Theorem 5 the following compensatability test is
immediate.

Compensatability Test 2: Suppose (Y,;, Y,;, Y3;, ¥y)) =
Di(I, ©, I, ®). Then (&, T;, C;) ms-compensatable &
lim,_ [tr (Y, + Y3l < 1. O

Also test 2 is sufficient and necessary, and explicit in the
system matrices, and holds for systems with white stochastic
parameters.

V. NUMERICAL CONSIDERATIONS AND EXAMPLES

The ms-stability of ($/) may be checked by calculation of
p(A”). Let ® denote Kronecker product [24]. It is easy to
show that the eigenvalues of A’ and of ' @ &’ are the same.
Hence, p(A) = p(®’ ® &") which is easy to calculate with
standard software. Note that for deterministic and constant &’
we have p(®' ® &) = p2(d).

The ms-compensatability of (®;, I';, C;) may be checked
by compensatability test 1 or 2. Therefore, we need to iterate
Ci(0,0,0,0) or D(1,0,1,0) until convergence is
reached. In CX or DX, terms like ®7X® arise for some
matrix X which may equally be written as st™'[(® ®
)7 st( X)), where st denotes the stack operator, and using
Kronecker product rules [24]. So ¢ ® fI> needs only to be
calculated once, while the st and st~' operations involve
only the renumbering of computer memory locations. It is
remarked that concerning test 2 often tr (Y, ;. + Y3 ;4y)/
tr(Y,; + Y3;) converges faster to p than [tr (Y;; + Y3,)]'/‘

For checking the ms-detectability of (&,, Vi, Q: ’) one is
referred to De Koning [9]. Note that from Definition 5 we
have to check that (¥, Q :) and (&7, V) are both ms-
detectable, and also that A'X = st™'[(® ® )7 st( X)].

The optimal stabilizing compensator, if it exists, may now
be calculated from Theorem 3 and using the remarks above,
given a system and a criterion. In view of the calculations it
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is convenient to specify the needed statistics of the parame-
ters by & ® $, T®T and C® C. Furthermore, we have
that ® &= & ® & + & ® &, and similarly for T, and C,.
Now we can make the calculations straightforward.

Example 1: Consider system (&, I, C) which is
specified by

3 _ 10.7092 0.3017] 7 [0.7001]

0.1814 0.9525) 0.1593 |
C=1[03088 0.5735],
IRE=p3®%), TIOT=(TO®T),
C®C=B(C®C)

where 8 = 0. Now p(® ® &) = p(®)* = 1.2_and
PP R ®) = (1 +B)p(®®d) = (1 +B)1.2. Thus, () is
not stable in the usual sense and ($,;) is not ms-stable. From
Theorem 5 we may calculate 5( A) = p($ @ &) for differ-
ent values of 8 which is done in Table I.

For 8 = 0 we have the deterministic case. Then p( A") =
0 because (P,T) is reachable and (®,C) is observable.
The radius p(A’) is an increasing function of (3. For
B = 0.2 system (®;,T;,C) is still ms-compensatable, for
B = 0.3, not any more.

Example 2: Consider system (11) and criterion (13) where
®,, T, and C,; are specified as in Example 1 and V, W, Q,
and R by

_[os627 0o — (0
V’[ 0 0.7357]’ W = [0.2588],
_[07350 o -

Q [ 0 - 0.9820]’ R = [0.6644].

Choose 3 = 0.1, then from Example 1 we know that
(®,, T, C;) is ms-compensatable. It also holds that R > 0,
W >0, and ($,, V%, Qi') ms-detectable. We may also use
the fact that QO > 0 and ¥V > 0. From Theorem 3 we may
calculate the optimal ms-stabilizing compensator (F, K, L)
specified by

Fo| 00731 —0.8496] _ [0.6457]
-0.2095  0.2334] 0.9439 |’
L=1[06238 1.1154].

It is interesting to compare the spectral radius p( A”) of the
optimal compensated system with p(A’), and to calculate
the criterion value ¢*. That is done in Table 11 for different
values of £.

The ms-stability of the system decreases as 8 increases,
while the criterion value increases. For 8 = 0.3 the system is
not ms-stable and the criterion value is infinite.

Finally, in this section we remark that all the calculations
are done with the software package PC-MATLAB, version
3.2 [25]) on an Olivetti M280 PC. The calculation of 5( A") in
Example 1 and (F, K, L) in Example 2 for one value of 8
took, respectively, 9 s and 13 s. Suppose n = 8, m = 1, and
! = 1, then these two calculation times are, respectively, 31 s
and 51 s.
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TABLE 1
MiNIMAL SPECTRAL RaADIUS
B (¢ ® ) (A)
0 1.20 0
0.05 1.26 0.47
0.10 1.32 0.67
0.20 1.44 0.95
0.30 1.56 1.17
TABLE I
SpecTrAL Rapius OpTiMAL SYSTEM
B FIO)) p(A) o*
0 0 0.56 53
0.05 0.47 0.65 6.8
0.10 0.67 0.75 9.7
0.20 0.95 0.95 53.5
0.30 1.17 1.17 [~

VI. CONCLUSIONS

In this paper the problem of optimal compensation has
been considered in the case of linear discrete-time systems
with stationary white parameters and quadratic criteria.
A generalization of the notion of ms-stabilizability, called
ms-compensatability has been introduced. It has been shown
that suitable conditions of ms-compensatability and ms-
detectability are sufficient, and necessary in general, for the
existence of a unique optimal ms-stabilizing compensator.
Two tests have been given to determine if a system is
ms-compensatable or not. One of the tests is based on a
measure of ms-compensatability. It has been indicated how
the tests and the optimal ms-stabilizing compensator may
be calculated numerically. Finally, the results have been
illustrated with some examples.
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