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Algorithms for optimal reduced-order dynamic output feedback control of linear discrete-time systems with white stochastic
parameters are U-D factored in this paper. U-D factorisation enhances computational accuracy, stability and possibly
efficiency. Since U-D factorisation of algorithms for optimal full-order output feedback controller design was recently
published by us, this paper focusses on the U-D factorisation of the optimal oblique projection matrix that becomes part
of the solution as a result of order-reduction. The equations producing the solution are known as the optimal projection
equations which for discrete-time systems have been strengthened in the past. The U-D factored strengthened discrete-time
optimal projection equations are presented in this paper by means of a transformation that has to be applied recursively until
convergence. The U-D factored and conventional algorithms are compared through a series of examples.
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1. Introduction

There are mainly three reasons why linear systems with
white stochastic parameters (also referred to as systems
with state and/or control dependent noise or systems with
multiplicative white noise) are important. First, system pa-
rameters may be white by their very nature (Wagenaar & De
Koning, 1988). Second, parameters may be assumed white
to obtain non-conservative robust feedback controllers with
respect to structured parameter uncertainty (Banning &
De Koning, 1995; Bernstein, 1987; Willems & Willems,
1983; Yaz & Skelton, 1994). Finally systems with stochas-
tic parameters may arise due to stochastic sampling, ran-
domly varying delays or Markovian jumps of system struc-
ture (Antunes, Hespanha, & Silvestre, 2009; De Koning &
Van Willigenburg, 2001; Immer, Yükselb, & Basar, 2006;
Karimi, 2013; Kögel, Blind, Allgöwer, & Findeisen, 2011;
Li, Zhoua, & Wub 2013; Matveev & Savkin, 2003; Shi &
Yu, 2011; Tsai & Ray, 1999). Possible other applications
of systems with stochastic parameters can for instance be
found in Karimi (2013), Yaz and Skelton (1994) and refer-
ences therein.

Design of controllers for linear systems with white
stochastic parameters has received considerable atten-
tion in the control literature (De Koning, 1982, 1992;
Gunckel & Franklin, 1963; Hyland, 1982; Joshi, 1976;
Karimi, 2013; Kleinman, 1969; Li, Zhou, & Duzhi, 2013;
McLane, 1971; Moore, Xun, Zhou, & Lim, 1999; Phillis,
1985; Van Willigenburg & De Koning, 2010; Willems &
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Willems, 1983; Yaz, 1988; Yaz & Skelton, 1994). The
same applies to order reduction of controllers (Bernstein &
Hyland, 1986; Jaimoukha, Haitham, Limebeer, & Shah,
2005; Kin & Rantzer, 2010; Liu & Anderson, 1989). Re-
lated but different from order-reduction, information struc-
ture constraints are also being considered (Rubió-Massegú,
Rossell, Karimi, & Palacios-Quiñonero, 2013). One ma-
jor application of the algorithms in this paper concerns
perturbation feedback control of non-linear systems us-
ing linearised models (Athans, 1971). Especially if the
dimension of the linearised model is large, i.e. after spa-
tial discretisation of an infinite dimensional system, order-
reduction is vital. Order-reduction and dynamic output
feedback control of linear systems with stochastic param-
eters are simultaneously and optimally addressed by the
algorithms in this paper. Applications involving optimal
output feedback controllers may also be found in Fujimoto,
Ota, and Nakayama (2011), Hounkpevi and Yaz (2008),
Meenakshi and Bhat (2006) and Boje (2005). Several recent
developments in this area are described by Karimi (2013).

U-D factorisation applies to non-negative matrices and
enhances the numerical accuracy, stability and possibly the
efficiency of computations involving these matrices. It has,
for example, been employed to improve computations re-
lated to Kalman filtering (Bierman, 1977), reduced-order
LQG controller design (Van Willigenburg & De Koning,
2004) and adaptive set membership filtering (Zhou, Han, &
Liu, 2008).

C© 2014 Taylor & Francis
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For linear systems with white stochastic parameters,
the current state of the art of algorithms producing optimal
dynamic output feedback controllers, called mean square
compensators, can be found in Van Willigenburg and De
Koning (2010). Linear time-invariant and time-varying sys-
tems are considered in both continuous and discrete-time.
In addition, both optimal full- and reduced-order mean
square compensators are considered for both a finite and in-
finite horizon. Finally differences between the ordinary and
strengthened optimal projection equations are addressed.

The algorithms that are U-D factored in this pa-
per verify reduced-order mean square compensatability
(De Koning & Van Willigenburg, 1998; Van Willigenburg
& De Koning, 2010). This is a system property required
for the existence of an optimal reduced-order mean square
compensator, if the horizon is infinite. The algorithms also
compute optimal reduced-order mean square compensators
over an infinite horizon. The algorithms solve the strength-
ened discrete-time optimal projection equations (SDOPE)
which are equivalent to first-order necessary optimality con-
ditions (De Koning & Van Willigenburg, 1998, 2010). In the
special full-order case they can be used to compute a unique
globally optimal mean square compensator (De Koning,
1992). The U-D factorisation of the associated full-order
algorithm was recently published by us (Van Willigenburg
& De Koning, 2013). In this paper we focus on the ex-
tension caused by order-reduction. This causes the entry
of an optimal oblique projection matrix into the SDOPE.
This significantly complicates matters because this matrix
is not symmetric and non-negative. To our best knowledge,
U-D factorisation of the SDOPE is considered here for the
first time.

One final remark as to the mathematical notation in this
paper: we use Kronecker products to represent statistics of
system matrices, instead of sums of matrices multiplied by
scalar stochastic processes. Using Kronecker products is
more general and concise as explained in Van Willigenburg
and De Koning (2013).

2. Compensatability and the optimal compensation
problem

Since our main research interest concerns digital opti-
mal control system design, in this paper we will consider
discrete-time linear systems with white stochastic param-
eters. In addition to the multiplicative white noise, the
discrete-time linear systems are also corrupted by additive
white system and measurement noise. These discrete-time
systems are described by

xi+1 = �ixi + �iui + vi, i = 0, 1, . . . , (2.1)

yi = Cixi + wi, i = 0, 1, .... (2.2)

In Equations (2.1) and (2.2) xi ∈ Rn represents the sys-
tem state, ui ∈ Rm the control inputs and yi ∈ Rl the ob-
servations at time, i = 0, 1, . . .. Furthermore vi represents
discrete-time zero-mean additive white system noise and
wi discrete-time zero-mean additive white measurement
noise. Because the discrete-time system has white stochas-
tic parameters, at each discrete-time instant, i = 0, 1, . . .,
the system matrices �i, �i, Ci have entries that instead
of deterministic, are white stochastic variables. As a re-
sult the processes {�i, i = 0, 1, . . .}, {�i, i = 0, 1, . . .},
{Ci, i = 0, 1, . . .} are sequences of independent random
matrices. They are assumed to have constant statistics
like {vi, i = 0, 1, . . .}, {wi, i = 0, 1, . . .} which are se-
quences of independent stochastic vectors. We assume
�i , �i , Ci , are independent of vj and wj , i �= j and un-
correlated with vi, wi . The processes {vi, i = 0, 1, . . .},
{wi, i = 0, 1, . . .} are zero-mean with covariance ma-
trices V ≥ 0, W ≥ 0 and cross-covariance matrix Y ,[

V Y

YT W

]
≥ 0. To facilitate U-D factorisation the processes

{�i, i = 0, 1, . . .}, {�i, i = 0, 1, . . .}, {Ci, i = 0, 1, . . .}
are assumed mutually uncorrelated. For stochastic vectors,
the mean or first moment as well as the covariance and sec-
ond moment are well known. The mean or first moment of
{�i, i = 0, 1, . . .} is denoted by

�̄ ∈ Rn×m. (2.3)

where the overbar denotes expectation and where the sub-
script i of � is deleted indicating the statistics are constant.
Each element of �̄ thus equals the average of the corre-
sponding element in �i . Next define,

�̃i = �i − �̄. (2.4)

Then the covariance of {�i, i = 0, 1, . . .} equals

�̃ ⊗ �̃ ∈ Rn2×m2
(2.5)

where the subscript i of �̃ is deleted again. The second
moment of {�i, i = 0, 1, . . .} equals

� ⊗ � ∈ Rn2×m2
(2.6)

where the subscript i of � is deleted again. It satisfies

� ⊗ � = � ⊗ � + �̃ ⊗ �̃ (2.7)

Similar relations apply to the processes {�i, i = 0, 1, . . .}
and {Ci, i = 0, 1, . . .}. Finally consider the dynamic output
feedback compensator,

x̂i+1 = F x̂i + Kyi, (2.8)

ui = −Lx̂i, i = 0, 1, . . . , (2.9)
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where x̂i ∈ Rnc , i = 0, 1, . . . is the compensator state hav-
ing prescribed dimension nc ≤ n. Denote this compensator
by (F,K,L). Call (F,K,L) minimal if the matrix pair
(F,K) is controllable and the matrix pair (F,L) is observ-
able. Associated to this compensator consider the closed
loop system,

[
xi+1

x̂i+1

]
=

[
�i −�iL

KCi F

] [
xi

x̂i

]
, i = 0, 1, .... (2.10)

Introduce

x ′
i =

[
xi+1

x̂i+1

]
, �′

i =
[

�i −�iL

KCi F

]
. (2.11)

Then the closed loop system is also represented by

x ′
i+1 = �′

ix
′
i , i = 0, 1, .... (2.12)

Let ρ denote spectral radius. From De Koning (1992) the
closed loop system (2.12) is mean-square stable (ms-stable)
if

ρ
(
�′ ⊗ �′) < 1. (2.13)

Definition 1: (De Koning & Van Willigenburg, 1998)

If for the system (2.1), (2.2), there exists a com-
pensator (2.8), (2.9) with state dimension nc such that
the closed loop system (2.12) is ms-stable the system
(2.1), (2.2) is called nc-mean-square compensatable (nc-
ms-compensatable). With respect to system (2.1), (2.2),
such a compensator is called mean-square stabilising (ms-
stabilising).

The optimal reduced-order compensation problem to
which the U-D factored algorithms presented in this paper
apply can now be stated. Within this problem statement E

denotes expectation.

2.1. Optimal reduced-order compensation
problem

For the system (2.1), (2.2), find the minimal ms-stabilising
compensator (F ∗,K∗, L∗) with given state dimension
nc ≤ n that minimises the infinite horizon quadratic sum
criterion,

σ∞ (F,K, L) = lim
N→∞

1

N
E

{
N∑

i=1

[
xi ui

] [
Q M

MT R

] [
xi

ui

]}
,

[
Q M

MT R

]
≥ 0 (2.14)

and find the associated minimum costs, σ ∗
∞ (F ∗,K∗, L∗).

According to Equations (2.3)–(2.7), De Koning (1992)
and De Koning & Van Willigenburg (1998) the following

problem data entirely determine the solution of the optimal
compensation problem,

nc, �̄, �̃ ⊗ �̃ = V ��, �̄, �̃ ⊗ �̃ = V ��, C̄, C̃ ⊗ C̃

= V CC, Q, R, M, V, W, Y. (2.15)

2.2. Algorithms for compensatability and optimal
compensation

(2.16)

(2.17)

(2.18)

where † denotes a generalised inverse of a square matrix
having the properties,

AA†A = A, A†AA† = A†. (2.19)

Also define,

(2.20)

(2.21)

(2.22)

where # denotes the group generalised or Drazin in-
verse and In the identity matrix of dimension n. Then
the transformation C: Sn × Sn × Sn × Sn → Sn × Sn ×
Sn × Sn that captures the necessary optimality condi-
tions for optimal reduced-order compensation known
as the SDOPE is given by (De Koning & Van

X X X
F L K C    , 
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Willigenburg, 1998; Van Willigenburg & De Koning,
2013)

(2.23)

Call X = {X1, X2, X3, X4} non-negative if
X1, X2, X3, X4 ≥ 0. The two compensatability tests
as well as the algorithm to compute the optimal reduced-
order compensator seek non-negative solutions of the
equation

X = CX, (2.24)

by recursively applying the transformation C until conver-
gence. A transformation similar to C is specified in De
Koning and Van Willigenburg (1998) using a different,
more convenient, representation. However, that represen-
tation is not suitable for U-D factorisation and is modified
here according to Van Willigenburg and De Koning (2013)
that is suitable for U-D factorisation. Together these results
provide the following theorem.

Theorem 1: Assume system (2.1), (2.2) is nc-ms-
compensatable and Q > 0, V > 0. If X∗ = CX∗ ≥ 0
and rank

(
X∗

3

) = rank
(
X∗

4

) = rank
(
X∗

3X
∗
4

) = nc then
X∗ satisfies the necessary optimality conditions
for reduced order compensation, (F ∗,K∗, L∗) =(
HFX∗GT ,HKX∗ , LX∗GT

)
where G,H ∈ Rnc×n satisfy

GT H = τ , GHT = Inc
and,

(2.25)

Remark 1: Observe from De Koning (1992), Theorem
3, that the condition Q > 0, V > 0 may be replaced with
R > 0, W > 0,

(
�i, V

1/2,Q1/2
)

ms-detectable.

Remark 2: As opposed to the full-order case, Equation
(2.25) may represent a local minimum that may exist in
the reduced-order case because (2.24) may have multiple
non-negative solutions. The full-order case is represented

by Equation (2.23) setting nc = n, τ = In, τ⊥ = θn where
θn denotes a zero matrix of dimension n (De Koning & Van
Willigenburg, 1998). Then Equation (2.23) becomes equal
to Equation (6.14) in Van Willigenburg and De Koning
(2013) after reordering the four elements of the transfor-
mation. In the full-order case, Equation (2.25) represents
the global minimum (De Koning, 1992).

Remark 3: In the full-order case recursive application
of transformation C starting from X ≥ 0 guarantees both
symmetry and non-negativeness of X during iteration (Van
Willigenburg & De Koning, 2013). The situation is consid-
erably more complicated in the reduced-order case. Al-
though symmetry is still guaranteed, observe that non-
negativeness is no longer guaranteed because of the third
and fourth component of transformation C represented
by Equation (2.23). To restore non-negativeness one may
be tempted to replace 1

2

(
τ�1 + �1τ

T
)

by τ�1τ
T and

1
2

(
τT �2 + �2τ

)
by τT �2τ . Doing so, the conventional

discrete-time optimal projection equations (CDOPE) are
implemented. The CDOPE are weaker than the SDOPE
and provide erroneous solutions in general, because itera-
tions of C leave τ unchanged. Although SDOPE may not
satisfy X ≥ 0 during parts of the iteration, if they con-
verge they converge to solutions that do (De Koning &
Van Willigenburg, 1998; Van Willigenburg & De Koning,
2000). U-D factorisation of X however demands X ≥ 0 at
all times. One major contribution of this paper is to present
two modifications of C guaranteeing this.

Remark 4: Another complication in the reduced-order
case is that X∗ = CX∗ must satisfy the rank conditions
rank

(
X∗

3

) = rank
(
X∗

4

) = rank
(
X∗

3X
∗
4

) = nc mentioned in
Theorem 1. They can be realised by upper bounding the rank
of τ to nc, during iterations of C. To that end Equation (2.22)
must be modified (De Koning & Van Willigenburg, 1998;
Van Willigenburg & De Koning, 2000). Upper bounding the
rank comes down to dropping a suitable part of the compu-
tation. If this part is not selected suitably convergence is not
generally achieved. Another major contribution of this pa-
per concerns the adaptation of Equation (2.22) to achieve
this, directly from the U-D factors of X3, X4, instead of
X3, X4 themselves. So what is called ‘squaring up’ of U-D
factors to produce X3, X4 is prevented in Equation (2.22).
This enhances computational accuracy and efficiency.

3. Modifications to ensure non-negativeness and
facilitate U-D factorisation

The subtle but crucial difference between the SDOPE and
CDOPE relates to the following equalities:

X∗
3 = τ�1τ

T = τ�1 = �1τ
T ,

X∗
4 = τT �2τ = τT �2 = �2τ. (3.1)
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The CDOPE do not require the second and third equal-
ity for X∗

3, X∗
4 in Equation (3.1) to hold, as opposed to the

SDOPE. The second and third equality in Equation (3.1)
need to hold however to ensure equivalence with first-order
necessary optimality conditions (De Koning & Van Willi-
genburg, 1998; Van Willigenburg & De Koning, 2000).
Therefore, if iterations of C are to converge to satisfy Equa-
tion (3.1), the third and fourth component of transformation
C must involve τ�1 and τT �2 respectively, as in Equa-
tion (2.23). The terms τ�1 and τT �2 are neither symmet-
ric nor non-negative by definition. According to Equation
(3.1), they need to converge to become both symmetric and
non-negative.

We first present two modifications that ensure the non-
negativeness of X during iteration of C as mentioned in
Remark 3 of the previous section. Assume Equation (3.1)
is satisfied. Then the third and fourth component of C in
Equation (2.23) may be replaced by

�1 − τ⊥�1τ
T
⊥ , �2 − τT

⊥�2τ⊥, (3.2)

which also include τ�1 and τT �2, as required. Although
symmetric, the two terms in Equation (3.2) are not non-
negative by definition. They also do not generally lead to
convergence of C as mentioned in Van Willigenburg and
De Koning (2000). Let λmin

1 , λmin
2 denote the smallest, pos-

sibly negative, eigenvalues of the first and second term in
Equation (3.2), respectively. One modification is to take the
third and fourth component of C to be,

�1 − τ⊥�1τ
T
⊥ + max

(−λmin
1 , 0

)
In,

�2 − τT
⊥�2τ⊥ + max

(−λmin
2 , 0

)
In. (3.3)

The terms in Equation (3.3) are guaranteed to be non-
negative. Moreover, they are equal to Equation (3.2) when-
ever the terms in Equation (3.2) are non-negative. In Sec-
tion 5 it is demonstrated that replacing the third and fourth
component of C by Equation (3.3) does generally lead to
convergence. Unfortunately, the negative signs appearing
in Equation (3.3) prevent direct updating from U-D fac-
tors of �1, �2. The negative signs in Equation (3.3) occur
precisely because of the need to involve τ�1 and τT �2.

Next we describe our second possible modification of
the third and fourth component of C in Equation (2.23)
guaranteeing non-negativeness of X during iteration of C.
Consider the singular value decompositions,

τ�1 = U1S1V
T

1 , τ T �2 = U2S2V
T

2 . (3.4)

Then the third and fourth component of C in Equation
(2.23) are taken to be,

U1S1U
T
1 , U2S2U

T
2 , (3.5)

Because U,V are unitary real matrices and S diagonal
matrices with real non-negative singular values on the di-
agonal, Equation (3.5) enforces both symmetry and non-
negativeness. Moreover, they are equal to the terms in Equa-
tion (3.4) whenever these are non-negative and symmetric.
Unfortunately, Equations (3.4) and (3.5) also require ‘squar-
ing up’ �1, �2 from their U-D factors because τ�1, τ T �2

are not symmetric in general.
Finally, in this section we present the computation of τ

having maximal rank nc directly from the U-D factors of
X3, X4 as mentioned in Remark 4 in the previous section.
To that end consider Cholesky decompositions,

X3 = S3S
T
3 , X4 = S4S

T
4 , (3.6)

and the singular value decomposition,

ST
3 S4 = U34S34V

T
34. (3.7)

Assume the singular value decomposition (3.7) has the
singular values in descending order on the diagonal of S34.
Then if rank (X3) = rank (X4) = rank (X3X4) = nc Equa-
tion (3.7) equals

ST
3 S4 = U34(:, 1 : nc)S34 (1 : nc, 1 : nc) V34(:, 1 : nc)T

(3.8)

where the notation in between brackets in Equation (3.8)
complies with Matlab notation, for example, (:, 1 : nc) indi-
cates all rows and the first nc columns of U34. Observe that
S34 (1 : nc, 1 : nc) in Equation (3.8) is a square diagonal
invertible matrix. Then according to lemma 4 and the asso-
ciated constructive algorithm presented by Zigic, Watson,
and Beattie (1993),

τ = S3U34 (:, 1 : nc) S−1
34 (1 : nc, 1 : nc) V34 (:, 1 : nc)T ST

4 ,

(3.9)

while G,H in Theorem 1 are given by

G=S
−1/2
34 U34 (:, 1 : nc)T ST

3 , H=S
−1/2
34 V34 (:, 1 : nc)T ST

4

(3.10)

If rank (X3X4) = nr > nc Equation (3.9) realises up-
per bounding of rank (τ ) to nc. If rank (X3X4) = nr < nc

then nc is replaced with nr in Equations (3.9) and (3.10).
The Cholesky decompositions (3.6) may be obtained di-
rectly from U-D factorisations of X3, X4 like rank (X3)
and rank (X4), as shown in the next section.

4. U-D factorisation

The algorithm to compute optimal reduced-order compen-
sators as well as the compensatability tests recursively
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applies the transformation C until convergence. The trans-
formation C was specified by Equation (2.23) and modi-
fied in the previous section to ensure symmetry and non-
negativeness of X at all times during iteration. Symmetry
and non-negativeness are numerically attractive properties
which are required to perform U-D factorisation. Moreover,
they simplify the statements of the compensatability tests
and main theorem that are stated first in this section. To state
these, let 
n represent a square positive diagonal matrix of
dimension n.

4.1. Compensatability test 1 (De Koning, 1992)

Choose Q = V = In, R = θn, W = θn. If Ci (θn, 
n, θn,


n) converges as i → ∞ then system (2.1), (2.2) is nc-ms-
compensatable.

4.2. Compensatability test 2 (De Koning, 1992)

Choose Q=V =θn, R= θn,W = θn. Let (X1,i , X2,i , X3,i ,

X4,i) = Ci (θn,
n, θn,
n). If lim
i→∞

[
tr(X1,i+1+X3,i+1)

tr(X1,i+X3,i)

]
< 1

then system (2.1), (2.2) is nc-ms-compensatable.

Remark 5: As explained in De Koning (1992),

ρ̃
(
�′ ⊗ �′) = lim

i→∞

[
tr (X1,i+1 + X3,i+1)

tr (X1,i + X3,i)

]
(4.1)

where ρ̃
(
�′ ⊗ �′) denotes a minimum of the spectral ra-

dius of the closed loop system (2.12), achievable with
a compensator. Therefore, Equation (4.1), computed by
compensatability test 2, is actually a measure of nc-ms-
compensatability.

Remark 6: Notice that compensatability test 1 and
2 represent sufficient but not necessary conditions for
nc-ms-compensatability. This is due to the fact that in
the reduced-order case X = CX may have multiple
non-negative solutions. As a result, convergence may
sometimes not be obtained depending on 
n. Therefore

n is mentioned in the compensatability tests instead of
In that is mentioned in De Koning and Van Willigenburg
(1998). In the full-order case a unique limit does exist, 
n

may be replaced by In and the compensatability tests are
necessary and sufficient. Then Equation (4.1) represents
the global minimum (De Koning, 1992).

The main theorem below states a constructive solution
of the optimal reduced-order compensation problem.

Theorem 2: Assume system (2.1), (2.2) is nc-ms-
compensatable and Q > 0, V > 0. Then, if X∗ =
lim
i→∞

Ci (θn,
n, θn,
n) exists, X∗ is a non-negative so-

lution of the equation X = CX. If, moreover, nc =
rank

(
X∗

3X
∗
4

)
then F ∗ = HFX∗GT , K∗ = HKX∗ , L∗ =

LX∗GT where G,H ∈ Rnc×n satisfy GT H = τ , GHT =
Inc

and

(4.2)

Proof: Theorem 2 follows from De Koning and Van Willi-
genburg (1998) and the modifications described in Sec-
tion 3.

Remark 7: Generally, the condition nc = rank
(
X∗

3X
∗
4

)
in Theorem 2 is met because transformation C upper
bounds rank (X3X4) to nc while it generally increases
rank (X3X4) if it falls below nc. In exceptional cases, how-
ever, nc = rank

(
X∗

3X
∗
4

)
cannot be met. This happens if the

full-order optimal compensator, that is globally optimal, has
a minimal realisation with state dimension nm < nc. In that
case nm = rank

(
X∗

3X
∗
4

)
< nc and (F ∗,K∗, L∗) is a mini-

mal realisation of the full-order compensator that is globally
optimal. Although globally optimal, (F ∗,K∗, L∗) is not for-
mally a solution of the reduced-order compensation prob-
lem because its state dimension is less than the prescribed
one. Therefore, it is preferable to specify what is called a
max–min prescribed compensator dimension nc ≤ nm (Van
Willigenburg & De Koning, 2002).

Finally, in this section we consider the U-D factorisa-
tion of the modified transformation C. The following two
equations represent the basic computations used in Van
Willigenburg and De Koning (2013) that are also used here
to U-D factorise the algorithm,

P1 = UP1DP1U
T
P1

, P2 = UP2DP2U
T
P2

, (4.3)

P3 = FP1F
T + P2 = UP3DP3U

T
P3

. (4.4)

In Equations (4.3) and (4.4) all matrices are square and
have the same dimension. Equation (4.3) represents U-D
factorisations of P1, P2 whereas Equation (4.4) specifies
P3 as well as its associated U-D factorisation. U represents
unit upper triangular matrices and D non-negative diag-
onal matrices. Starting from P1, P2 one algorithm (A1)
computes UP1 ,DP1 and UP2 ,DP2 ,

A1 : P → UP ,DP . (4.5)

Another algorithm (A2) computes UP3 ,DP3 in Equation
(4.4) from UP1 ,DP1 , UP2 ,DP2 and F ,

A2 :UP1 ,DP1 , UP2 ,DP2 , F → UP3 ,DP3 . (4.6)

Algorithms A1 and A2 are described in Bierman (1977,
pp. 100–101, 131–133). The modification needed to apply
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them to non-negative instead of positive matrices is pre-
sented in Van Willigenburg and De Koning (2013).

The first two components of transformation C in Equa-
tion (2.23) are identical to the corresponding ones in Van
Willigenburg and De Koning (2013) except for the final
terms τ⊥�1τ

T
⊥ and τT

⊥�2τ⊥ that are added. Furthermore,
�1, �2 in Equations (2.20) and (2.21) are identical to the
other two components of C in Van Willigenburg and De
Koning (2013). Their U-D factorisation, therefore, follows
from Van Willigenburg and De Koning (2013). Having U-D
factorisations of �1, �2 adding the terms τ⊥�1τ

T
⊥ and

τT
⊥�2τ⊥ can be realised by algorithm A2 as follows. From

U�1 ,D�1 ,τ⊥ we first compute Uτ⊥�1τ
T
⊥ ,Dτ⊥�1τ

T
⊥ using A2.

Using A2 again the U-D factors of the first component of
C are updated to include τ⊥�1τ

T
⊥ . Similar arguments apply

to the second component of C.
Consider Equation (3.3) that computes the final two

components of C. The equation is less favourable be-
cause it requires subtracting τ⊥�1τ

T
⊥ and τT

⊥�2τ⊥ which
cannot be performed by algorithm A2. Therefore, we are
now forced to recover �1 from U�1 ,D�1 and τ⊥�1τ

T
⊥

from Uτ⊥�1τ
T
⊥ ,Dτ⊥�1τ

T
⊥ to compute �1 − τ⊥�1τ

T
⊥ through

ordinary matrix subtraction. Similar arguments apply to
�2 − τT

⊥�2τ⊥. Next, eigenvalues of �1 − τ⊥�1τ
T
⊥ and

�2 − τT
⊥�2τ⊥ have to be computed to determine λmin

1 , λmin
2

which are also needed to compute Equation (3.3). Finally,
U-D factorisation of (3.3) has to be performed by algo-
rithm A1. Alternatively, the last two components of C may
be computed from Equations (3.4) and (3.5). As already
mentioned in the previous section, they require recovering
�1 from U�1 ,D�1 and similarly for �2. After computa-
tion of (3.4), (3.5), U-D factorisation of (3.5) has to be
performed by algorithm A1.

Finally, consider the computation of τ according to
(3.6)–(3.9). As indicated in the previous section, S3 and
S4 can be obtained from their U-D factors,

S3 = UX3D
1/2
X3

, S4 = UX4D
1/2
X4

(4.7)

where D
1/2
X3

and D
1/2
X4

are calculated taking scalar square
roots of the non-zero diagonal elements of DX3 , DX4 . Also
rank (X3) is the number of non-zero diagonal elements of
DX3 and similarly for rank (X4).

As indicated in De Koning and Van Willigenburg (1998)
and Van Willigenburg and De Koning (2000) introduction
of numerical damping may enhance convergence of the al-
gorithms in critical cases. After each single iteration of
transformation C numerical damping is realised by the fol-
lowing additional computation:

Xj,i := (1 − a) Xj,i + aXj,i−1, j = 1, 2, 3, 4,

i = 1, 2, . . . , (4.8)

where lower index i indicates the result Xj after the ith
iteration and 0 ≤ a < 1 is the numerical damping factor.
Let Uj,i, Dj,i denote the U-D factors of Xj,i . Then, the
U-D factored implementation of Equation (4.8) multiplies
the diagonal elements of Dj,i and Dj,i−1 with the scalars
1 − a and a, respectively and next uses a simplified version
of A2 described by Equations (4.4) and (4.6), with F = In,
to add the two terms on the right in Equation (4.8).

5. Numerical considerations and examples

The purpose of this paper is algorithm development for
reduced-order control system design. To judge their overall
performance, randomly generated examples up to a sig-
nificant system order are most appropriate. These will be
used in this section. We deliberately avoid specific indus-
trial examples since their focus is different, namely towards
a specific application. This does not mean to say that we
consider industrial applications of less importance. On the
contrary, control is an applied science and consideration of
specific industrial applications we consider to be a major,
next research step.

In Van Willigenburg and De Koning (2013) a similar
algorithm development was presented for full-order control
system design. It is highly interesting to see the effect of
order-reduction on algorithm performance. Therefore, we
use almost the same randomly generated examples in this
paper. In the examples the system state dimension n varies
from 2 to 70.

Example 1 in Van Willigenburg and De Koning (2013)
turns out to be hardly affected by order-reduction from full-
order nc = n = 2 to reduced-order nc = 1. To more clearly
illustrate the effect of order reduction, element 2,1 of �̄ in
Example 1 below is different.

Example 1:

�̄ =
[

0.7092 0.3017
0.3017 0.9525

]
, �̄ =

[
0.7001
0.1593

]
,

C̄ = [
0.3088 0.5735

]
(5.1)

�̃ ⊗ �̃ = V �� = β1�̄ ⊗ �̄, �̃ ⊗ �̃ = V �� = β2�̄ ⊗ �̄,

C̃ ⊗ C̃ = V CC = β3C̄ ⊗ C̄, β1, β2, β3 ≥ 0

(5.2)

V = diag
(

0.5627 0.7357
)
, W = 0.2588,

Q = diag
(

0.7350 0.9820
)
, R = 0.6644 (5.3)

Observe that the problem data specification Equations
(5.1)–(5.3) complies with Equation (2.15). From Van Willi-
genburg and De Koning (2013) and De Koning (1993)
observe that β1, β2, β3 ≥ 0 in Equation (5.2) are mea-
sures of uncertainty of the system matrices �i, �i, Ci , re-
spectively. As these measures increase the minimal spectral
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Table 1. Minimal spectral radius and costs against parameter uncertainty.

β1 β2 β3 ρ̃
(
�′ ⊗ �′) nc = n = 2 ρ̃

(
�′ ⊗ �′) nc = 1 σ ∗

∞ nc = n = 2 σ ∗
∞ nc = 1

0.05 0.05 0.05 5.3353E−01 5.3361E−01 8.0727E + 00 8.1204E + 00
0.1 0.1 0.1 7.5000E−01 7.5024E−01 1.3257E + 01 1.3416E + 01
0.2 0.2 0.2 1.0610E + 00 1.0611E + 00 ∞ ∞
0.3 0.3 0.3 1.3051E + 00 1.3051E + 00 ∞ ∞
0 0.1 0.1 5.2619E−01 5.2652E−01 6.7386E + 00 6.7605E + 00
0.2 0.1 0.1 9.4759E−01 9.4771E−01 6.9151E + 01 7.6070E + 01
0.4 0.1 0.1 1.3056E + 00 1.3057E + 00 ∞ ∞
0.6 0.1 0.1 1.6370E + 00 1.6370E + 00 ∞ ∞
0.8 0.1 0.1 1.9531E + 00 1.9531E + 00 ∞ ∞
0.1 0 0.1 6.3981E−01 6.3992E−01 1.1139E + 01 1.1254E + 01
0.1 0.2 0.1 8.1879E−01 8.1895E−01 1.6204E + 01 1.6435E + 01
0.1 0.4 0.1 9.1120E−01 9.1127E−01 2.7939E + 01 2.8589E + 01
0.1 0.6 0.1 9.7466E−01 9.7469E−01 8.6663E + 01 9.2848E + 01
0.1 0.8 0.1 1.0226E + 00 1.0226E + 00 ∞ ∞
0.1 0.1 0 6.3981E−01 6.3992E−01 1.0899E + 01 1.1016E + 01
0.1 0.1 0.2 8.1879E−01 8.1895E−01 1.6502E + 01 1.6730E + 01
0.1 0.1 0.4 9.1120E−01 9.1127E−01 2.9340E + 01 2.9990E + 01
0.1 0.1 0.6 9.7466E−01 9.7469E−01 9.3510E + 01 1.0002E + 02
0.1 0.1 0.8 1.0226E + 00 1.0226E + 00 ∞ ∞

radius ρ̃
(
�′ ⊗ �′) of the closed loop system, achievable

with a full and reduced-order compensator, increases (De
Koning, 1993). This is confirmed by Table 1. The same ap-
plies to the minimum value σ ∗

∞ of the cost function (2.14).
If ρ̃

(
�′ ⊗ �′) ≥ 1 the system is not nc-ms-compensatable

and σ ∗
∞ = ∞. The values of ρ̃

(
�′ ⊗ �′) and σ ∗

∞ were
computed with both the conventional and U-D factored al-
gorithm. Both gave the same results within the specified
convergence tolerance of 10−6, indicating algebraic equiv-
alence. The required number of algorithm iterations to ob-
tain convergence was almost identical as well. Reducing the
compensator state dimension from full-order nc = n = 2 to
reduced-order nc = 1 increases the minimal costs. This in-
crease is larger when parameter uncertainty is larger.

Like in the full-order case, within the U-D factored
algorithms for reduced-order compensation, second mo-
ment computations play a dominant role. The efficiency
of these second moment computations is discussed in

Van Willigenburg and De Koning (2013). The number of
floating point operations (multiply accumulate operations)
required by them in the reduced-order case remains propor-
tional to (r� + 1) n3.

It is interesting to see how order reduction affects com-
putational efficiency of the algorithms. To that end Ta-
ble 2 records execution times of the U-D factored and
conventional algorithms when the compensator order is
both full and reduced. The compensation problems in Ta-
ble 2 are randomly generated with 20 ≤ n ≤ 70, m = 3,
l = 4, r� = min (nm, r�), rC = min (nl, r�). The genera-
tion was such that they are all nc-ms-compensatable for
nc = n, 3. Table 2 in this paper is similar to Table 3 in
Van Willigenburg and De Koning (2013). As in that pa-
per, when executed in MATLAB R©, the U-D algorithms are
computationally more efficient in cases of large n and small
r�, r� , rC . The numbers r�, r� , rC relate to the minimal
representation of � ⊗ �, � ⊗ � and C ⊗ C as explained
in Willigenburg and De Koning (2013).

Table 2. Execution times (sec) of conventional and U-D factored algorithms.

Single Total Single Total U-D single U-D total U-D single U-D total
iteration iteration iteration iteration iteration iteration iteration iteration

n r� time nc = n time nc = n time nc = 3 time nc = 3 time nc = n time nc = n time nc = 3 time nc = 3

20 1 4.42E−04 1.46E−02 1.02E−03 8.47E−02 1.12E−03 3.58E−02 1.30E−03 8.18E−02
50 1 6.88E−03 3.30E−01 1.12E−02 7.20E−01 4.85E−03 2.28E−01 7.27E−03 3.64E + 01
70 1 2.53E−02 3.44E + 00 3.19E−02 4.33E + 00 1.21E−02 1.62E + 00 1.78E−02 2.76E + 00
20 5 3.40E−04 1.12E−02 1.01E−03 5.68E−02 1.25E−03 4.13E−02 1.77E−03 7.43E−02
50 5 6.58E−03 3.09E−01 9.93E−03 4.97E−01 7.71E−03 3.55E−01 1.15E−02 5.73E + 01
70 5 2.51E−02 5.54E + 00 3.21E−02 7.09E + 00 2.19E−02 4.85E + 00 2.78E−02 6.65E + 00
20 20 5.34E−04 1.76E−02 1.20E−03 5.18E−02 3.93E−03 1.30E−01 3.83E−03 1.26E−01
50 50 7.15E−03 3.29E−01 1.06E−02 4.65E−01 4.91E−02 2.26E + 00 5.19E−02 6.02E + 00
70 70 2.53E−02 6.87E + 00 3.23E−02 8.82E + 00 1.67E−01 4.55E + 01 1.75E−01 4.79E + 01
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From Table 2 observe that order reduction increases the
computational load of each single iteration for both the con-
ventional algorithms (columns 3–6) and the U-D factored
algorithms (columns 7–10). Also the number of iterations
before convergence generally increases. U-D factorisation,
however, has other advantages such as guaranteeing non-
negativeness of the matrices during iterations of the algo-
rithm that enhances numerical stability. Another potential
advantage is doubling of precision (Bierman, 1977). Dou-
bling of precision is achieved only if recovery of the U-D
factored matrices into ordinary representation is avoided
during the iterations. This type of recovery occurs in Equa-
tions (2.16) and (2.17) in the part that is not inverted. Fur-
thermore, it occurs in Equation (3.3) that is absent in the
full-order case. Further investigation into U-D factorisation
is needed to see if this recovery can be avoided. As to the
conventional algorithms programmed in MATLAB R©, we
conclude that they appear to be very efficient. Moreover,
their efficiency is almost independent of r�, r� , rC .

6. Conclusions

The U-D factorisation of algorithms solving the SDOPE
for reduced-order compensation of systems with white pa-
rameters was presented. This extends the U-D factorisation
of similar equations for full-order compensation recently
presented by us. Since systems with deterministic param-
eters are a special case of systems with white parameters,
reduced-order compensation of these more common type of
systems is also realised by the algorithms. This special re-
sult is obtained by setting to zero all terms involving a tilde
that relate to system matrices �i , �i , Ci . U-D factorisation
enhances numerical accuracy and stability and possibly ef-
ficiency. As shown in this paper, the latter depends on the
minimal representation of the stochastic system matrices.

To benefit from the possible doubling of precision ob-
tained by U-D factorisation, the expressions of the com-
pensator gains need further investigation. Presently their
computation is not fully U-D factored. The same applies
to the terms involving the optimal oblique projection ma-
trix τ . Another topic for future research concerns the U-D
factorisation of two Lyapunov equations that may be used
instead of the SDOPE. This would extend the result of
Van Willigenburg and De Koning (2004) that applies to
systems with deterministic parameters. The two Lyapunov
equations seem more suited for U-D factorisation because
they do not involve the non-symmetric optimal oblique pro-
jection matrix. The modifications presented in this paper
ensure non-negativeness and symmetry of matrices during
iterations of the SDOPE. They may also be employed in
previously published algorithms, where symmetry and non-
negativeness were not guaranteed during iterations. This is
expected to further improve numerical stability and conver-
gence of these algorithms.
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