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Abstract Sensitivities are shown to play a key role

in a highly efficient algorithm, presented in this paper,

to establish three fundamental structural system prop-

erties: local structural identifiability, local observabil-

ity, and local strong accessibility. Sensitivities have

the advantageous property to be governed by linear

dynamics, also if the system itself is nonlinear. By

integrating their linear dynamics over a short time

period, and by sampling the result, a sensitivity matrix

is obtained. If this sensitivity matrix satisfies a rank

condition, then the local structural system property

under investigation holds. This rank condition will be

referred to in this paper as the sensitivity rank

condition (SERC). Applying a singular value decom-

position (SVD) to the sensitivity matrix not only

determines its rank but also pinpoints exactly the

system components causing a possible failure to

satisfy the local structural system property. The

algorithm is highly efficient because integration of

linear systems over short time-periods and computa-

tion of an SVD are computationally cheap. Therefore,

it allows for the handling of large-scale systems in the

order of seconds, as opposed to conventional algo-

rithms that mostly rely on Lie series expansions and a

corresponding Lie algebraic rank condition (LARC).

The SERC and LARC algorithms are mathematically

and computationally compared through a series of

examples.

Keywords Local controllability � Local strong
accessibility � Local observability � Local structural
identifiability � Large-scale nonlinear systems �
Sensitivity matrix � Singular value decomposition � Lie
algebraic rank condition (LARC) � Sensitivity rank

condition (SERC)

1 Introduction

In establishing local structural identifiability of non-

linear dynamical systems [1–4], we found that para-

metric output sensitivity matrices turned out to be the

key to a simple and efficient algorithm that determines

local structural identifiability, even for large-scale

nonlinear systems. Moreover, the signatures obtained

from this algorithm pinpoint exactly to the parameters

involved in total correlations that, in fact, cause the

lack of identifiability. As compared to alternative

algorithms, based on, e.g., Lie brackets [5–10] or

directed graphs [11–13], this algorithm puts hardly

any restrictions on system size or system structure.

Moreover, in terms of efficiency, the algorithm is

highly competitive. Together, this opens up a large

field of applications, e.g., in mechanical engineering,

systems biology, and chemical engineering where use
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is made of nonlinear, possibly large-scale dynamic

systems described by sets of ordinary differential

equations.

The beneficial properties of the algorithm are

largely due to the fact that parametric output sensitiv-

ities are governed by linear dynamics, irrespective of

the possibly nonlinear dynamics of the underlying

system. They also relate to the fact that the linear

dynamics need only be integrated over a small time-

interval and the fact that, after sampling of the result,

an SVD is the only additional computation required.

Very recently, in an extensive overview and compar-

ison of computational methods for identifiability [14],

this algorithm was mentioned to be incredibly fast. In

the earlier comparisons [15, 16], the computational

complexity of establishing identifiability had already

been noted. This motivates us to extend this algorithm,

developed in [1–3] for local structural identifiability,

to local observability and local strong accessibility, as

presented in this paper. All three properties are highly

fundamental structural properties of nonlinear

systems.

Computational methods for local identifiability of

parameters, often also including initial conditions,

have received significant attention in the last decade,

as can be seen from the comparison and large number

of references in [14]. For nonlinear systems, a Lie

algebraic rank condition (LARC) still plays a central

role in almost all of them and is also used to check

local observability [9]. LARC is also central to

algorithms detecting local strong accessibility, which

is closely related to local controllability [7, 17]. The

computation of LARC requires repeated symbolic Lie

differentiation or Lie Bracketing which are computa-

tionally expensive, especially with growing system

dimensions. But even for small-scale systems, the

computation may be very expensive [18]. In addition,

no known stopping condition may exist as long as

LARC is not satisfied [19]. Because local observabil-

ity is almost dual to local strong accessibility [5, 7, 20],

it is remarkable that a similar development of algo-

rithms detecting local strong accessibility seems not to

have taken place [17, 21, 22]. A possible reason for

this has recently been discussed by us [18]. To extend

the algorithm, we will further investigate and exploit

duality in this paper.

The algorithm based on sensitivities culminates in

computing what we refer to as the sensitivity rank

condition (SERC). The shorthand SERC will also be

used to refer to the algorithm itself. We also compare

SERC with a conventional algorithm establishing the

same three properties by means of a Lie algebraic rank

condition (LARC) [5–10]. This conventional algo-

rithm, also denoted by the shorthand LARC, relies on

Lie series expansion, differential geometry and sym-

bolic computation. From a practical perspective,

SERC is shown to heavily outperform LARC in terms

of computational efficiency and feasibility for large-

scale systems. These results are illustrated with a

series of examples, including both small- and large-

scale systems.

The outline of this paper is as follows. Starting from

the local structural identifiability algorithm, Sect. 2

presents the extensions to assess local observability

and local strong accessibility revealing that all three

properties can be treated within one single framework.

Section 3 presents a series of examples concerning

both small- and large-scale systems, as well as details

concerning implementation of the algorithm. One

large-scale example demonstrates how the amount by

which SERC outperforms LARC in computational

efficiency, heavily grows with increasing system

dimensions. Section 3 concerns an extensive compar-

ison and discussion of SERC versus LARC. For local

strong accessibility and local observability, generic

equivalence of SERC and LARC is proved in

appendix 2. A similar proof seems possible for local

structural identifiability. But the additional technical

issues involved are considered to be beyond the scope

of this paper, that focusses on application of SERC.

Section 5 presents conclusions, an important one

stating that SERC reveals how linear dynamics are

fundamental in determining local structural properties

of dynamic systems, also if the systems themselves are

nonlinear.

2 Algorithms establishing local structural

identifiability, local observability and local

strong accessibility

2.1 Systems and trajectories

In this paper, we consider dynamical systems repre-

sented by ordinary differential equations. These can be

written in the state-space format
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dx

dt
¼ f x tð Þ; u tð Þ; hð Þ; f ; x 2 Rn; u 2 Rr; h 2 Rp;

ð2:1Þ

y tð Þ ¼ h x tð Þ; hð Þ; y; h 2 Rm: ð2:2Þ

Here, variable t denotes continuous time, x tð Þ is a
vector containing the state variables, u tð Þ is a vector

containing the input variables of the system, h
represents the vector of parameters and f is an analytic

vector function also referred to as the system dynam-

ics. Furthermore, y tð Þ is a vector containing the output
variables available for observation, identification and

control and h is an analytic vector function that

determines how the output variables depend on the

state variables and parameters. Analytic vector func-

tions f , hmay be nonlinear and f need not be affine in u

as is required in most conventional controllability,

observability and structural identifiability analyses

[5–10]. The algorithms to be presented will perform

computations along an a-priori specified trajectory

governed by Eqs. (2.1), (2.2) for t 2 t0; tN½ �, tN [ t0.

This trajectory is fixed if we fully specify the initial

conditions, the parameter values and input:

x t0ð Þ; h; u tð Þ; t 2 t0; tN½ �: ð2:3Þ

All results obtained from our algorithms are

therefore conditioned on a choice of (2.3). This choice

will be further discussed in Sect. 3.

2.2 Local structural identifiability algorithm

Our starting point is the algorithm presented in [1] that

addresses local structural identifiability. The so-called

parametric state and output sensitivity matrix functions
ox
oh tð Þ, oy

oh tð Þ associated with system (2.1), (2.2) play a

key role. For notational convenience, these matrix

functions will be written as xh tð Þ and yh tð Þ having

dimensions n� p and m� p, respectively. At each

time t, xh and yh indicate the sensitivity of state vector

x tð Þ and output vector y tð Þ to the parameter vector h.
Straightforward differentiation of Eqs. (2.1), (2.2)

with respect to parameter vector h, and interchanging

differentiation with respect to different, independent

parameters, reveals that the dynamics of these sensi-

tivity matrix functions is governed by

dxh
dt

¼ of

ox
xh þ

of

oh
; ð2:4Þ

yh ¼
oh

ox
xh þ

oh

oh
: ð2:5Þ

Simultaneous integration of differential Eqs. (2.1),

(2.4) from the initial conditions x t0ð Þ in (2.3) and,

xh t0ð Þ ¼ 0 2 Rn�p; ð2:6Þ

provides x tð Þ, xh tð Þ. Substitution of x tð Þ, xh tð Þ in

(2.5) then yields yh tð Þ. Sensitivity matrix function

yh tð Þ having p independent columns is a necessary and

sufficient condition to uniquely determine h from y tð Þ
of system (2.1), (2.2), given a choice of (2.3) [23]. One

way to check this rank condition is to evaluate yh tð Þ; at
discrete times t0\t1\::\tN , and to compute the rank

of the resulting parametric output sensitivity matrix:

Yh ¼

yh t0ð Þ
yh t1ð Þ

:
yh tNð Þ

2
664

3
775 2 R Nþ1ð Þm�p: ð2:7Þ

To avoid obvious rank deficiency of Yh, the number

of discrete time points N should be chosen such that,

N þ 1ð Þm� p: ð2:8Þ

In principle, the sampling instants t0\t1\::\tN in

(2.7) may be chosen arbitrarily close, thus requiring

only a very small integration interval t0; tN½ �: In

practice, this interval should be selected large enough

for all timescales of the system, especially the larger

ones, to become manifest. To verify this, one may

increase the length of the integration interval and

check whether this increases the rank of sensitivity

matrix Yh.

The rank condition, referred to as SERC, now reads

as rank Yhð Þ ¼ p. It is a necessary and sufficient

condition to uniquely determine h from y tð Þ of system
(2.1), (2.2), given a choice of (2.3). To determine

SERC, it is convenient to compute a singular value

decomposition (SVD) of Yh. If this matrix is rank

deficient, its SVD yields one or more zero singular

values. Corresponding to each zero singular value, a

singular vector is obtained from the SVD. The nonzero

elements of such a singular vector indicate the

parameters that are totally correlated and therefore

cannot be identified uniquely. A graphical
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representation of these singular vectors is called a

signature [1].

2.3 Local observability algorithm

By considering the initial state x t0ð Þ as the to be

identified system parameters h, local structural iden-
tifiability turns into local observability of state x t0ð Þ,
i.e., local structural identifiability of the initial state

x t0ð Þ from measurements y tð Þ, t� t0. In this case, state

vector x t0ð Þ acts as parameter vector h in Eqs. (2.1)–

(2.5). For notational convenience, let x0 denote x t0ð Þ.
Because in Eqs. (2.4), (2.5), f and h do not depend on

x0, these equations simplify to

dxx0
dt

¼ of

ox
xx0 ; ð2:9Þ

yx0 ¼
oh

ox
xx0 ; ð2:10Þ

where xx0 tð Þ, yx0 tð Þ represent the parametric sensitivity
matrix functions of x tð Þ and y tð Þ with respect to the

initial state x0. Simultaneous integration of differential

Eqs. (2.1), (2.9) from the initial condition (2.3) and

initial condition

xx0 t0ð Þ ¼ In; ð2:11Þ

yields x tð Þ, xx0 tð Þ. In Eq. (2.11), In denotes the n� n

identity matrix, being the sensitivity of x t0ð Þ ¼ x0 with

respect to itself. Substitution of x tð Þ, xx0 tð Þ in (2.9),

(2.10) then yields y tð Þ, yx0 tð Þ.
Sensitivity matrix function yx0 tð Þ having n inde-

pendent columns is necessary and sufficient to

uniquely obtain x0 from y tð Þ of system (2.1), (2.2),

given a choice of (2.3) [23]. As in (2.7), to check this

rank condition, we concatenate evaluations of sensi-

tivity matrix function yx0 tð Þ at times t0\t1\::\tN to

obtain the following sensitivity matrix:

Yx0 ¼

yx0 t0ð Þ
yx0 t1ð Þ

:
yx0 tNð Þ

2
664

3
775 2 R Nþ1ð Þm�n: ð2:12Þ

To avoid obvious rank deficiency of Yx0 , the number

of discrete time points N should now be chosen such

that

N þ 1ð Þm� n: ð2:13Þ

Similar as for local structural identifiability, SERC

for local observability now reads as rank Yx0ð Þ ¼ n. It

is a necessary and sufficient condition to uniquely

obtain x0 from y tð Þ of system (2.1), (2.2), given a

choice of (2.3). If Yx0 does not have full rank n, the

nonzero elements of singular vectors corresponding to

zero singular values indicate state variables that are

totally correlated and therefore cannot be identified

uniquely [1].

2.4 Linking observability of linear and nonlinear

systems through sensitivities

Here, using sensitivities, we will show how observ-

ability of linear systems can be used to asses local

observability of system (2.1), (2.2), that may be

nonlinear. Recall that sensitivity matrix functions

xx0 tð Þ; yx0 tð Þ have the advantageous property of being
governed by the dynamics (2.9), (2.10) that are linear.

This linearity is easily understood from the fact that

the sensitivity of x tð Þ and y tð Þ with respect to x t0ð Þ ¼
x0 concerns the propagation of infinitesimal deviations

dx t0ð Þ;dy t0ð Þ from x t0ð Þ;y t0ð Þ along a trajectory of the

nonlinear system (2.1), (2.2) specified by (2.3). The

corresponding dynamic equations of dx tð Þ, dy tð Þ are

therefore linear dynamic equations

d

dt
dx ¼ of

ox
dx; dy ¼ oh

ox
dx; ð2:14Þ

evaluated along the trajectory under consideration

causing these linear dynamics to be time-varying.

Associated with time-varying linear systems is the

state transition matrixU t; t0ð Þ, which for system (2.14)

is defined in the following way [24]:

dx tð Þ ¼ U t; t0ð Þdx t0ð Þ: ð2:15Þ

By substituting (2.15) in (2.14), one immediately

sees that the state transition matrix U t; t0ð Þ also

satisfies matrix differential equation (2.9) if we

identify xx0 tð Þ with U t; t0ð Þ. Moreover, the initial

condition (2.11) of sensitivity matrix function xx0 tð Þ is
precisely the initial condition of state transition matrix

U t; t0ð Þ. Therefore,

xx0 tð Þ � U t; t0ð Þ; ð2:16Þ

sensitivity matrix function xx0 tð Þ is nothing but the

state transition matrix U t; t0ð Þ of the linear dynamics
(2.14). The linear system (2.14) is observable if matrix
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function oh
ox tð ÞU t; t0ð Þ has n independent columns [24].

Note that, in [24], this type of observability is called A-

observability [25]. From Eqs. (2.10) and (2.16), we

find that

yx0 tð Þ ¼ oh

ox
tð ÞU t; t0ð Þ: ð2:17Þ

Therefore, the condition for observability of the

linear dynamics (2.14) is identical to the condition that

sensitivity matrix function yx0 tð Þ; t0 � t� tN has n

independent columns, as required for local observ-

ability of x0 from the trajectory. Thus, we arrive at the

following important conclusion:

For nonlinear system (2.1), (2.2), local observabil-

ity of x0 from a trajectory specified by (2.3) is

equivalent with observability of the linear dynamics

(2.14) along that trajectory.

Observability of linear systems is very well devel-

oped as part of linear control system design [24–27].

Specifically, observability is an important property for

the successful application of linear output perturbation

feedback controller designs, to control nonlinear

systems along optimal state and control trajectories

[27]. In this context, however, the linear dynamics

represent an approximation of the nonlinear dynamics

(2.1), (2.2) close to the trajectory, whereas in our

context, they are an exact description of the propaga-

tion of sensitivities along the trajectory.

2.5 Local strong accessibility algorithm

By considering sensitivities, in section 1.3, we found

the important equivalence between observability of

the linear dynamics along trajectories and observabil-

ity of the initial state x0 from such trajectories. Since

for linear systems, observability and controllability are

dual properties, this suggests a similar equivalence

between local controllability and controllability of

linear dynamics along trajectories. Based on this idea,

in [20, 18], we already presented some preliminary

results. In this section, the dual results are presented.

We will use these in section 3 to argue that the

equivalence holds if local controllability is replaced

with local strong accessibility, which is a slightly

weaker property [7]. Consider the linear system

d

dt
dx ¼ of

ox
dxþ of

ou
du: ð2:18Þ

describing the propagation of infinitesimal perturba-

tions dx,du along trajectories of system (2.1). To

pursue duality, the following substitutions must be

made in section 1.2 [20, 18, 23–25]:

t!tN � t; t0 ! tN ; y! u; Y !U; x t0ð Þ
¼ x0 ! x tNð Þ¼ xN :

of

ox
! of

ox

� �T

;
oh

ox
! of

ou

� �T

; yx0 ! uxN ; U! UT
� ��1

:

ð2:19Þ

As dual equivalents of Eqs. (2.9)–(2.11), we now

obtain

� dxxN
dt

¼ of

ox

� �T

xxN ; ð2:20Þ

uxN ¼ of

ou

� �T

xxN ; ð2:21Þ

xxN tNð Þ ¼ In: ð2:22Þ

The dual equivalent of sensitivity matrix (2.12) is

UxN ¼

uxN tNð Þ
uxN tN�1ð Þ

:
uxN t0ð Þ

2
664

3
775 2 R Nþ1ð Þr�n; ð2:23Þ

containing samples of uxN tð Þ. The dual equivalent of

(2.17) becomes

uxN tð Þ ¼ of

ou

� �T

tð Þ UT tN � t; tNð Þ
� ��1

: ð2:24Þ

Using UT tN � t; tNð Þ
� ��1¼ UT tN ; tN � tð Þ [24],

equation (2.24) becomes

uxN tð Þ ¼ of

ou

� �T

tð ÞUT tN ; tN � tð Þ: ð2:25Þ

From (2.25), uxN tð Þ having n independent columns

is the dual equivalent of U tN ; tN � tð Þ of
ou having n

independent rows which is precisely the condition for

the linear dynamics (2.18) to be what is called A-

controllable in [24]. To avoid obvious rank deficiency

in (2.23), N should now be chosen such that,

N þ 1ð Þr� n: ð2:26Þ

123

Sensitivity matrices as keys to local structural system 2603



3 Algorithm implementation and examples

3.1 Implementation

The algorithms described in the previous sections rely

on numerical integration of the dynamics (2.1), (2.2),

(2.4), (2.5) for local structural identifiability, and (2.1),

(2.2), (2.9), (2.10) for local observability along a

trajectory determined by a choice of (2.3). In section 3,

we will argue that, in general, selecting the input u tð Þ,
t 2 t0; tN½ � in (2.3) arbitrarily, results in sufficient

excitation of the linear sensitivity dynamics required

for SERC to produce the same rank as LARC. The

sampling instants at which the sensitivities are eval-

uated are taken to be equidistant here, i.e.,

ti ¼ i
tN
N
; i ¼ 0; 1; . . .;N: ð3:1Þ

To satisfy (2.8), we select N ¼ 2p, and to satisfy

(2.13), (2.26) N ¼ 2n.

The algorithm for local structural identifiability has

been used earlier in [1, 3], on both small- and large-

scale systems to assess local structural identifiability

of h, sometimes with the initial condition of the state

variables x0 included as additional parameters. As

explained in section 1.2, identifiability of the initial

state variables x0 alone is equivalent with local

observability of x0. Since in [1–3], identifiability of

parameters and initial states has already been covered

extensively, most examples in this paper concern local

strong accessibility. These examples require numeri-

cal integration of Eqs. (2.1), (2.20), (2.21) backwards

in time. We will find that in all examples, numerical

integration stays tractable and is efficient, even for

large-scale systems, since we can restrict integration to

relatively short time intervals. The only requirement

for the length of this time interval is, of course, that all

timescales of the system become manifest. The partial

derivatives in the sensitivity equations are computed

using automatic differentiation [28], since pure sym-

bolic differentiation may become intractable for large-

scale systems [29]. Alternatively, one may use com-

plex-valued algebra for a very accurate determination

of the Jacobi matrices that appear in the sensitivity

equations [30]. We used MATLAB R2019A for our

computations on a PC having a 3.10 gigahertz Intel

Core i5-8600 processor and running on Windows 10.

For automatic differentiation, we used a method

obtained from MATLAB Central, supplied by Martin

de la Gorce, that supports sparse matrices. The latter

improves the algorithm efficiency, especially for large

systems. For numerical integration, we used

MATLAB function ode45 with default settings. We

deliberately do not select an integrator for stiff

systems, since these may approximate fast transient

behavior corresponding to small time scales, that are

important for detecting structural system properties.

For local structural identifiability and local observ-

ability, a singular value decomposition (SVD) of

sensitivity matrix Yx0 in (2.7), (2.12) plays a key role in

the analysis. Similarly, for local strong accessibility,

an SVD of sensitivity matrix UxN in (2.23) plays this

key role. The SVD of this matrix can be represented by

UxN ¼
Xn
i¼1

uiriv
T
i ; UxN 2 R Nþ1ð Þr�n; ui 2 R Nþ1ð Þr; ri

2 R1; vi 2 Rn:

ð3:2Þ

This decomposition is a sum of equally sized

matrices uiv
T
i , weighted by their corresponding singu-

lar values ri � 0. If one or more ri are (numerically)

zero, UxN is rank deficient. Column vectors vi corre-

sponding to zero singular values ri are basis vectors of
the null space of UxN . Given that N þ 1ð Þr� n, these

vectors determine directions in state space along

which state xN cannot be controlled locally. In the

examples presented in the next two sections, the

column vectors vi will be graphically presented as to

clearly show these directions. As in [1], we call these

graphs the strong accessibility signature. Of course, if

the system satisfies SERC, then nonzero singular

values are present and the strong accessibility signa-

ture is empty.

3.2 Small-scale system examples

Example 1 (Example 3 from [31]).

This artificial example is used in [31] to show how

initial conditions x t0ð Þ can influence strong accessi-

bility of systems which in turn may influence identi-

fiability. The system is represented by (2.1), (2.2) with

f x; u; hð Þ ¼ �h1u1 � h2x1 � h3x2
h3x2 � h4ð Þx1

� �
; ð3:3Þ
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h x; hð Þ ¼ x1: ð3:4Þ

The system (2.1), (3.3) is local strong accessible

from all states except for states satisfying

h3x2 � h4 ¼ 0. In that case from (3.3),

x2 tð Þ ¼ x2 t0ð Þ, irrespective of the input u tð Þ, which
causes the system to be not local strong accessible

from these states. This in turn causes a lack of local

identifiability of system (2.1), (2.2), (3.3), (3.4) that

does not occur otherwise [31]. We will use our

algorithms to confirm these results. Taking arbitrarily,

u tð Þ ¼1þ 0:5 sin 2ptð Þ; t 2 t0; tN½ �; t0 ¼ 0; tN ¼ 1;

h ¼

5:1291e� 01

4:6048e� 01

3:5040e� 01

9:5046e� 02

2
6664

3
7775; x tNð Þ ¼

7:0924e� 01

1.1597e� 01

� �
;

ð3:5Þ

our algorithm for local strong accessibility produces

the singular values r1 ¼ 9:3806e� 01, r2 ¼
2:1674e� 02 of UxN in (2.23), confirming local strong

accessibility. Next, we take (3.5) except for

x2 tNð Þ ¼ h4
h3

: ð3:6Þ

From (3.3), the choice (3.6) implies x2 tð Þ ¼ h4=h3,
irrespective of the input u tð Þ: Then, our algorithm

produces the singular values r1 ¼ 9:3522e� 01,

r2 ¼ 0. Clearly, the zero singular value indicates that

local strong accessibility does not hold. The corre-

sponding right singular vector in (3.2) is found to be

m2 ¼ 0; 1½ �T . This confirms that only the second state is

not local strong accessible.

Suppose we want to estimate all p ¼ 4 parameters

of system (2.1), (2.2), (3.3), (3.4). Then, given (3.5),

with x tNð Þ replaced by x t0ð Þ, our identifiability algo-

rithm produces singular values 1.7372e + 00,

7.2723e� 02, 1.6213e� 02, 5.6044e� 04, indicating

local identifiability. Next, take (3.5) except for,

x2 t0ð Þ ¼ h4
h3

: ð3:7Þ

Again, from (3.3), the choice (3.7) implies

x2 tð Þ ¼ h4=h3, irrespective of the input u tð Þ. Further-
more, observe that (3.7) represents a very special case

in which the initial state x t0ð Þ depends on the

parameters h. This requires a modification of the

initial conditions (2.6) (initiating the sensitivity

dynamics) of the identifiability algorithm

xh t0ð Þ ¼ 0 0 0 0

0 0 �h4=h
2
3 1=h3

� �
: ð3:8Þ

Then, our algorithm produces the singular values

2.2712e + 00, 1.6340e� 01, 3.5852e� 02, 0 indicat-

ing that local identifiability is lost again. To the

singular value r4 ¼ 0 in (3.2), the right singular vector

m4 ¼ 0; 0;�1; 0½ �T corresponds. It indicates that only

the third parameter is unidentifiable. All these results

completely match the ones found in [31]. It is

important to note that, of these examples, the one

with the largest computation time took only 0:04

seconds.

Example 2 (Example 6.4 from [8] where local

strong accessibility is called local reachability).

This example concerns the classic car parking

problem where the dynamics of the car are represented

by

f x; uð Þ ¼

cos x3 þ x4ð Þ
sin x3 þ x4ð Þ

sin x4ð Þ
0

2
664

3
775u1 þ

0

0

0

1

2
664

3
775u2: ð3:9Þ

The dynamics show that in this case, there is no drift

vector field, but instead two control vector fields (see

section 3 for this terminology) can be manipulated.

We arbitrarily selected u tð Þ ¼ sin 2pt
tN

� 	
; cos 2pt

tN

� 	h iT
,

x tNð Þ ¼ 1.0129; 0:9605 ; 0:8504; 0:5950½ �T ,
t 2 t0; tN½ �, t0 ¼ 0; tN ¼ 1. The singular values of

sensitivity matrix UxN in (2.23) are then computed to

be 3:4230, 3:0000, 0:1001, 0:01782. Since no numer-

ically zero singular values are found, local strong

accessibility is established, as in [8]. The computation

time required by the algorithm was 0.049 s. Selecting

u tð Þ ¼ 0, t 2 t0; tN½ � clearly results in a steady-state

trajectory. For u tð Þ ¼ 0, t 2 t0; tN½ � and x tNð Þ ¼
1:0129; 0:9605; 0:8504; 0:5950½ �T the singular values
are computed to be 3:4909, 3:0000, 2:6986e� 16,

4:8033e� 33. The two numerically zero singular

values now indicate a rank deficiency. Trajectories

like these are called singular trajectories in Sect. 4.

Such trajectories do not excite the sensitivity dynam-

ics sufficiently for SERC to obtain the same rank as

123

Sensitivity matrices as keys to local structural system 2605



LARC. For this particular example, this is further

demonstrated in [18]. It will be argued in Sect. 4 that,

in general, an arbitrary choice of u tð Þ, t 2 t0; tN½ � in
(2.3) results in a nonsingular trajectory.

Example 3 (Example 6.1 from [8]).

f x; uð Þ ¼

x1x3 þ x2e
x2

x3
x4 � x2x3

x23 þ x2x4 � x22x3

2
664

3
775þ

x1
1

0

x3

2
664

3
775u: ð3:10Þ

From [8], we know that system (2.1), (3.10) has two

modes that are not locally strong accessible. We

arbitrarily selected u tð Þ ¼ cos 2pt
tN

� 	
, t 2 t0; tN½ �, t0 ¼ 0,

tN ¼ 1, x tNð Þ ¼ 1.0129; 0:9605 ; 0:8504; 0:5950½ �T .
Then, the singular values obtained from an SVD of

the sensitivity matrix UxN in (2.23) are plotted in the

left panel of Fig. 1 in descending order. Note the

logarithmic scale and the large gap between the

singular values clearly indicating that two singular

values are numerically zero. They reveal the two

modes that are not locally strong accessible as already

found in [8]. The computation time required by the

algorithm was 0.1 s.

The right panel of Fig. 1 shows what we call the

strong accessibility signature showing all elements of

the two column vectors vi in (3.2) corresponding to the

two numerically zero singular values r3, r4. Element j

of each singular vector corresponds to state variable j,

j ¼ 1; 2; ::; n. Elements of the one-but-last singular

vector m3 are denoted by ‘o’ and those of the last

singular vector m4 by ‘x’. From this strong accessibility

signature on the right, we conclude that state variable 1

is locally strong accessible while the two modes that

are not locally strong accessible involve state variables

2, 3 and 4. The computation time required by the

algorithm is 0.343 s.

3.3 Large-scale system examples

To demonstrate the high efficiency of our algorithm,

and its applicability to large-scale systems, the first

two examples presented in this section are those with

the highest state dimension appearing in [32–34]. For

one of these examples, it is very easy to extend the

state dimension, as we will do. Furthermore, we will

extend the analysis performed in [32–34] by checking

local strong accessibility for different combinations of

control inputs.

Example 4 A platoon of underwater robots (vehi-

cles) [32].

In this example, we consider a platoon consisting of

one robot that is the leader and several other robots

following the leader. The leader is the only robot with

full information of the terrain and mission. The robots

Fig. 1 Singular values of sensitivity matrix UxN (left panel) and

strong accessibility signature of Example 3 (right panel). Note

the large gap between the second and third singular value,

indicating two numerically zero singular values and a

corresponding loss of local strong accessibility. In the right

panel ‘o’ are elements of the singular vector corresponding to r3
and ‘x’ elements of the singular vector corresponding to r4
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that follow maintain the same heading as the leading

robot but have full control over their individual inputs.

In the planar state-space model of the platoon, the

leader and each follower are represented by five state

variables. State variables 1 and 3 represent planar x; y

coordinates of the robot. State variables 2 and 4 and

their derivatives model damping present in each robot.

State variable 5 represents angular position with

respect to a planar reference frame. The dynamics of

the leader is given by

_x1
_x2
_x3
_x4
_x5

2
66664

3
77775
¼

x2
�2x2
x4

�2x4
0

2
66664

3
77775
þ

0

cos x5ð Þ
0

sin x5ð Þ
0

2
66664

3
77775
u1 þ

0

0

0

0

1

2
66664

3
77775
u2:

ð3:11Þ

The followers are numbered by j ¼ 1; 2; ::;M. The

dynamics of the jth follower is governed by

_x5jþ1

_x5jþ2

_x5jþ3

_x5jþ4

_x5jþ5

2
66664

3
77775
¼

x5jþ2

�2x5jþ2

x5jþ4

�2x5jþ4

x5j�1 � x5jþ4

2
66664

3
77775
þ

0

cos x5jþ5

� �
0

sin x5jþ5

� �
0

2
66664

3
77775
u2jþ1

þ

0

0

0

0

1

2
66664

3
77775
u2jþ2:

ð3:12Þ

With M followers, the complete platoon has n ¼
5 M þ 1ð Þ state variables and r ¼ 2 M þ 1ð Þ inputs. By
increasing M, arbitrary large state and control dimen-

sions are obtained. Using a symmetry argument, it is

proved in [32] that local strong accessibility forM ¼ 1

implies local strong accessibility for M[ 1. For M ¼
1; 4; 9; 19; 39; 49 Fig. 2 shows the singular values of

UxN in (2.23) on the vertical axis. Since no singular

value is numerically zero, this confirms local strong

accessibility in each case. Numerical integration was

performed starting at a terminal state xN , having

uniformly distributed components between �1 and 1.

All controls were taken to be constant during back-

wards integration from terminal time tN ¼ 1 to time

t0 ¼ 0. The components of the control vector were also

uniformly distributed random numbers between �1

and 1: The corresponding computation times required

by our algorithm are presented in Table 1. To show the

high efficiency of the algorithm for large-scale

systems, a comparison is made with the Mathematica

package called ProPac [8]. Computation times to

execute the function ControlDistribution within Math-

ematica 11.2 on the very same PC are also recorded in

Table 1. This function uses Lie brackets to establish

local strong accessibility (called local reachability in

[8]). The factor by which our algorithm outperforms

the one using Lie brackets is seen to dramatically

increase with the state dimension.

The numerical efficiency of the algorithm allows

extended analysis of large systems, e.g., we may easily

remove some control inputs and check the effect on

local strong accessibility. For the case M ¼ 4,

n ¼ 25ð Þ after removing control input u4, Fig. 3 shows

the singular values of UxN and the corresponding

strong accessibility signature. These reveal that in this

case, one mode is not locally strong accessible. Its

direction involves state variables 3, 8 and 10. Thus, the

other state variables are still locally strong accessible.

If we remove u3, instead of u4, four modes appear to be

not locally strong accessible, as can be seen from

Fig. 4. These modes involve state variables 6, 7, 8 and

9 that all belong to the first robot that follows. The

other state variables and robots are therefore still

locally strong accessible.

Finally, we consider the case M ¼ 4 with u6
removed. Figure 5 shows the resulting singular values

and strong accessibility signature. As expected from

symmetry arguments in [32], the effect of removing u6

Fig. 2 Singular values for M ¼ 1; 4; 9; 19; 39; 49 confirming

local strong accessibility in each case because no gaps and

associated numerically zero singular values occur
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is similar to removing u4. This can also be concluded

from the structure of equation (3.12). By comparing

Fig. 5 with Fig. 3, we observe that one mode is

obtained that is not locally strong accessible in both

cases. Moreover, when u6 is removed, the strong

accessibility signature is shifted five indices to the

Table 1 Algorithm execution times for different M and corresponding state dimension n

M 1 4 9 19 29 39 49

n 10 25 50 100 150 200 250

EXE SERC [s.] 0.183 0.282 0.53 0.981 1.507 1.988 2.525

EXE LARC [s.] 0.016 0.157 2.797 49.641 270.297 896.875 2216.41

’’EXE SERC’’ indicates the execution times required by our MATLAB algorithm implementation and ‘‘EXE LARC’’ those required

by the ProPac function ControlDistribution that uses Lie brackets

Fig. 3 M ¼ 4, u4 removed; singular values (left) and strong accessibility signature (right)

Fig. 4 M ¼ 4, u3 removed; singular values (left) and strong

accessibility signature (right). Corresponding to the 4 numer-

ically zero singular values on the left, on the right the

components of the 4 singular vectors indicated by o; x; 	;r
respectively, make up the strong accessibility signature

123

2608 L. G. Van Willigenburg et al.



right as compared to when u4 is removed (apart from a

possible sign reversal of the elements of each singular

vector). Thus, when u6 is removed, the modes that are

not locally strong accessible involve the same com-

binations of state variables 8, 13 and 15 as of state

variables 3, 8 and 10 when u4 is removed. Applying

the same symmetry argument, if instead of u3 we

remove u5, we expect four modes will pop up that are

not locally strong accessible, and a shift of the strong

accessibility signature of Figs. 4, 5 places to the right.

This is confirmed by our algorithm. In computing the

above cases, the algorithm CPU time varied between

0.252 and 0.255 s.

Example 5 A combined heat and power system of a

hotel building (BCHP) [33, 34].

In this example, we consider the controllability of

temperature in different rooms and parts of a Hotel

building by adjusting flow rates in the system. The

state-space representation of this system is given in

appendix 1. The system has 14 state variables all

representing different temperatures in the system. It

has 12 control inputs that represent different flow rates

in the system. In [33], it is reported that the system is

locally strong accessible. Deactivating sets of control

inputs and applying our algorithm revealed that local

strong accessibility is still preserved when C1 ¼
u1; u5; u6; u8; u9f g are set to zero. The same holds for

C2 ¼ u1; u6; u8; u9; u12f g.
These results follow from Fig. 6 where C0 indicates

the case that no controls are excluded. Numerical

integration was performed starting from terminal state

xN having randomly generated components between 0

and 1. All controls were taken to be constant during

integration from terminal time tN ¼ 1 to time t0 ¼ 0.

The components of the control vector were generated

randomly between �1 and 1. To the components of

parameter vector h, we assigned random values

between 1 and 2. The algorithm execution time varied

between 0.361 and 0.409 s.

Figures 7 and 8 show the singular values and strong

accessibility signatures for four other sets of excluded

control inputs, namely C3 ¼ u1; u5; u6; u8; u9; u12f g,
C4 ¼ u1; u5; u6; u7; u9f g, C5 ¼ u1; u7; u9; u11; u12f g,

Fig. 5 M ¼ 4, u6 removed; singular values (left) and strong accessibility signature (right)

Fig. 6 Singular values obtained for 3 excluded sets of inputs.

Since all of them are nonzero numerically this confirms local

strong accessibility in each case
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and C6 ¼ u1; u2; u6; u8; u9; u12f g. Observe that for the
excluded sets C3 � C5, one mode occurs that is not

locally strong accessible. For C3, this mode coincides

with state variable 11, for C4 with state variable 6, and

for C5 with state variable 12. All other state variables

remain locally strong accessible. For C6, two modes

occur that are not locally strong accessible, coinciding

with state variables 1 and 2.

The next and final example is a challenging one

since it contains parameters that are ill-identifiable,

i.e., practically very hard to identify. In addition, the

system is also ill-conditioned in some cases. The

example concerns large-scale mass-spring-damper

systems that contain nonlinearities and in some cases

flutter. Flutter implies stiffness of the system, which

reduces the efficiency of numerical integration. Still,

with some modification, our algorithm still comes up

Fig. 7 Singular values obtained for 4 excluded sets of inputs. In

each case at least 1 numerically zero singular value occurs

implying that local strong accessibility does not hold

Fig. 8 Strong accessibility signatures for excluded sets C3;C4 (top) and C5;C6(bottom)
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with correct solutions in the order of seconds up to a

minute.

Example 6: Identifiability of parameters of a mass-

spring-damper system.

The system consists of nM unit masses mi ¼ 1; i ¼
1; 2; :; nM connected in series with nonlinear springs

and dampers. At each end of the series, a nonlinear

spring and linear damper connect to a fixed wall, see

Fig. 9. The state variables of this system are xi; i ¼
1; 2; :; nM representing displacements of the masses

from their equilibrium position and xnMþi, i ¼
1; 2; :; nM representing their velocities, with positive

values pointing to the right. In Fig. 9, si; ri; di; i ¼
1; 2; ::; nM þ 1 represent ordinary spring constants

acting linearly, nonlinear spring constants, and damp-

ing coefficients acting linearly. The system dynamics

are represented by (2.1) with

fi ¼� si xi � xi�1ð Þ � ri xi � xi�1ð Þ3

� di xiþnM � xiþnM�1ð Þ
� siþ1 xi � xiþ1ð Þ � riþ1 xi � xiþ1ð Þ3

� diþ1 xiþnM � xiþnMþ1ð Þ:

ð3:13Þ

for i ¼ 2; 3; ::; nM � 1. Because of the fixed walls, for

i ¼ 1, equation (3.13) applies with x0 ¼ xnM ¼ 0, and

for i ¼ nM , equation (3.13) applies with

xnMþ1 ¼ xnMþnMþ1 ¼ 0.

Assuming the displacement of only one mass is

measured, we study the identifiability of parameters

si; ri; di;i ¼ 1; 2; :; nM þ 1 for different values of nM .

We selected nM in between 1 and 15 and random

parameter values si; di in between 0.2 and 1 and

ri ¼ si=2, i ¼ 1; 2; :; nM þ 1. The initial conditions xi,

i ¼ 1; 2; :; 2nM were also selected randomly between

�1 and 1. Then, in each case, all 3 nM þ 1ð Þ parameters

turned out to be identifiable regardless of which mass

displacement is measured. On the other hand, param-

eters of springs and dampers close to the right wall

turned out to be ill-identifiable from measurement of

the position x1 of mass m1 on the left, especially for

larger values of nM .

Here, we only present results of some interesting,

difficult cases. For the large-scale example with

nM ¼ 15, while measuring the displacement x1 of the

first mass m1; we provide the singular values obtained

from one trajectory in the left panel in Fig. 10 and of

five trajectories in the right panel. In the latter case, the

five sensitivity matrices (2.7) obtained from each

trajectory, having identical parameters but different

initial conditions, are stacked on top of one another

resulting in a concatenated sensitivity matrix to which

we apply the singular value decomposition (3.2). As

explained in [3], [35], this concatenation can greatly

improve the visibility of a possible gap in the singular

values indicating a lack of identifiability. Since in this

case all parameters are identifiable, the stacking only

reduces the range of the singular values significantly.

Note that, the ratio of singular values on the left is

limited by the machine precision of 2:2� 10�16 which

may prevent locating a possible gap. This problem is

thus resolved by concatenating the sensitivity matrices

of five trajectories on the right. The execution time is

approximately 3.3 s for each single trajectory.

As a final case, we present the results for nM ¼ 5

and nM ¼ 15 with flutter introduced by enlarging the

spring constants s1; r1; s16; r16 with a factor 1000 and

at the same time reducing d1; d16 with a factor 1000

turning the system into a stiff one. Moreover, perfect

symmetric motions are realized on each side of the

middle mass m3 for nM ¼ 5, and m8 for nM ¼ 15. In

the latter case, this is achieved by taking s8þi ¼ s8�i;

d8þi ¼ d8�i; x0;iþ7 ¼ �x0;i�7, i ¼ 1; 2; ::; 7,

x0;i ¼ 0;i ¼ 8; 16; 17; 18; ::; 30; ri ¼ si=2, i ¼

Fig. 9 Mass-spring-damper system with nonlinear springs and unit masses
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1; 2; ::; 16 and otherwise random. Due to this symme-

try, masses m3 and m8 do not move. Measuring their

position, as we do now, will cause unidentifiability of

parameters.

In Fig. 11, the top panels present results of two

individual symmetric trajectories, one for nM ¼ 5,

with an execution time of 1.16 s, and one for nM ¼ 15.

To obtain proper results for nM ¼ 15 that also includes

flutter, sensitivity matrices of five trajectories are

concatenated in the bottom left panel. The execution

time for all five trajectories together was 37.8 s. A

slight change of any of the parameters or initial

conditions will destroy the symmetry of the motions

on either side of the middle mass m8; resulting in

identifiability of all parameters again. Like in Example

2, the symmetric trajectories in Fig. 11 are singular

trajectories, as further explained and discussed in the

next section.

4 Is SERC a free lunch?

The benefits of SERC as compared to LARC have

been clearly demonstrated in the previous sec-

tion. They mostly relate to an enormous gain in

efficiency, enabling the handling of large-scale sys-

tems, for which LARC tends to be very inefficient or to

break down. Furthermore, LARC is restricted to

nonlinear systems (2.1), (2.2) that are affine in the

input. These are represented by (2.1), (2.2) with

f x; u; hð Þ ¼ f0 x; hð Þ þ
Xr

i¼1

fi x; hð Þui; ð4:1Þ

where fi x; hð Þ, i ¼ 0; 1; ::; r are analytic vector func-

tions. Note that, the property local strong accessibility,

which is verified by both SERC and LARC, is a

slightly weaker property than local controllability. If

the so-called drift vector field f0 x; hð Þ ¼ 0, local strong

accessibility becomes equal to local controllability.

The vector fields fi x; hð Þ, i ¼ 1; 2; ::; r that multiply ui
in (4.1), are called control vector fields [7].

SERC performs computations along the a-priori

selected trajectory specified by parameters h, terminal

state x tNð Þ and input u tð Þ; t 2 t0; tN½ � in (2.3). Since

system (2.1), (2.2) is assumed analytic, results con-

cerning system structure obtained for terminal state

x tNð Þ on the trajectory, hold for all states x tð Þ, t 2
t0; tN½ � on the trajectory. Establishing the linear

dynamics by which sensitivities propagate requires

differentiation of the nonlinear system dynamics. This

can be very accurately handled by automatic differ-

entiation [28]. After equidistant sampling over time, a

numerical sensitivity matrix is obtained of which the

numerical rank must be determined. Apart from

automatic differentiation, these numerical computa-

tions may be prone to numerical errors. As the

examples in the previous section show, with default

settings for numerical integration, and taking a still

short, but long enough trajectory, leads generally to a

clear gap in the singular values, if any, to properly

Fig. 10 Singular values for one trajectory (left panel) and five

trajectories after concatenating their sensitivity matrices (right

panel) obtained taking tN ¼ 9. Given the machine precision of

2:2� 10�16 only from the right panel identifiability of all 48

parameters may be concluded
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determine the numerical rank. This gap can be

increased, and the range of singular values decreased,

by concatenating sensitivity matrices of different

trajectories, as illustrated by Example 6. From this

example, it is clear that when the range of singular

values approaches the machine precision, our algo-

rithm cannot locate a possible gap in the lower range.

Since the singular values are actually measures of

identifiability, when being close to the machine

precision, they indicate extreme ill-identifiability. This

is valuable information to engineers concerning

practical identifiability but may prevent the algorithm

from correctly establishing structural identifiability

[36].

LARC on the other hand restricts analysis to a

single state [7], denoted by xL in Fig. 12, not requiring

specification of a trajectory. It verifies local strong

accessibility for state xL, complying with local defi-

nitions of this property [7], [9]. LARC does not require

specification of a trajectory since it locally considers

all possible trajectories containing xL. This is realized

by considering a Lie series expansion of the nonlinear

Fig. 11 Singular values for one symmetric trajectory obtained

taking tN ¼ 3 and nM ¼ 5 (top left panel) and one in case nM ¼
15 (top right panel). In the latter case concatenation of

sensitivity matrices is required to find the correct gap halfway

the total number of parameters (bottom left panel). The flutter

and symmetry of motion in case nM ¼ 15 can be seen from the

bottom right panel that shows all 15 mass displacements
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system dynamics (2.1), (2.2) around state xL, requiring

Lie bracketing [5–10]. A disadvantage of LARC is that

the number of Lie Brackets that are needed to reach the

maximum rank is generally not known a-priori and

may grow very large [19]. This causes the outcome to

be uncertain, whenever the rank condition is not met

and may cause the analysis to become infeasible

[14–16], [18]. On the other hand, LARC determines

structural identifiability and does not suffer from

stiffness and other types of numerical ill-conditioning,

such as ill-identifiability.

Only in exceptional cases, the difference between

SERC and LARC may result in different outcomes.

One example is the classic car parking problem

(Example 2 in section 2.2, Example 1 in [18]) if

u tð Þ ¼ 0, t 2 t0; tN½ �. Then, the trajectories are steady-
state trajectories with corresponding sensitivity matri-

ces that are rank deficient, instead of full rank.

Although SERC correctly indicates a failure of

controllability of the linear dynamics (2.14), other

trajectories containing xL will not indicate this failure,

see Fig. 12. This shows the importance of choosing the

trajectory appropriately. In [37], singular trajectories

are defined and recognized on which the equivalence

between controllability of the linear dynamics (2.14)

and local strong accessibility fails. This equivalence

concerns precisely the one between SERC and LARC

in this paper, when their rank is full. Moreover, in [37],

trajectories are proved to be generically nonsingular.

In Fig. 12, we have therefore adopted the same

terminology. In appendix 2, using arguments from

[37] and [5], the generic equivalence between SERC

and LARC for local strong accessibility is also proved

when LARC does not give full rank.

So far in this section, the discussion focused on

local strong accessibility. Using similar arguments as

for local strong accessibility, we also prove generic

equivalence between LARC and SERC for local

observability in appendix 2. Most likely, the proof

for local structural identifiability can be obtained in a

similar manner. But since this involves additional

technicalities, it is considered out of the scope of this

paper that focuses on application of SERC. Experi-

menting with SERC on different nonlinear systems

and different trajectories, we found that if one selects

the input u tð Þ, t 2 t0; tN½ � in (2.3) arbitrarily, SERC

equaled LARC in all cases. This is in line with all

examples in section 2 and [1–3]. In the case of local

structural identifiability, the selection of a trajectory

through an arbitrary choice of the input u tð Þ, t 2 t0; tN½ �
in (2.3) may be identified with selecting an input that is

‘‘sufficiently exciting’’ for the output sensitivities,

meaning that the input excites all relevant dynamics of

the linear sensitivity system (2.4), (2.5) [38]. If one is

in doubt about the nonsingularity of the trajectory

containing xL in Fig. 12, one may of course test with

several trajectories containing xL in Fig. 12 and select

the one for which SERC gives the highest rank.

5 Conclusions

Sensitivity matrices and an associated rank condition

(SERC) were shown to be keys to a unifying approach

establishing three fundamental properties that charac-

terize nonlinear system structure: local structural

identifiability, local observability and local strong

accessibility. This approach resulted in a highly

Fig. 12 LARC evaluated at xL, versus SERC evaluated along

nonsingular state trajectories xns;i tð Þ, i ¼ 1; 2; 3 and the singular
trajectory xs tð Þ, all containing xL but having different inputs

u tð Þ, t 2 t0; tN½ �. LARC equals SERC along nonsingular

trajectories. Along singular trajectories the rank obtained from

SERC is less than the one from LARC. In practice, the number

of nonsingular trajectories greatly outnumber the number of

singular trajectories
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efficient algorithm enabling the structural analysis of

systems with a state dimension up to 250 within

several seconds. Our algorithm opens the possibility to

verify these properties for large-scale systems where

other methods tend to fail or break down. The

importance of sensitivity matrices has first been

recognized in the context of system identification. In

this paper, it was shown how it carries over to local

observability and local strong accessibility.

The behavior of sensitivity matrix functions

appears to be governed by time-varying linear

dynamics. Integrating the linear sensitivity dynamics

in parallel with the nonlinear system dynamics over

short periods of time provides the sensitivity matrix

functions. After appropriate sampling, a sensitivity

matrix is obtained. A singular value decomposition

applied to this matrix together with a sensitivity rank

condition (SERC) yields enough information to decide

whether the structural property holds. Moreover, the

null space corresponding to zero singular values, also

obtained from the singular value decomposition,

reveals locally the cause of lack of identifiability,

observability, or strong accessibility. It pinpoints the

exact state variables and/or parameters that are

involved in a total correlation. This null space can be

graphically represented and is termed the identifiabil-

ity/observability/strong accessibility signature.

For the examples presented in this paper and several

references, the outcomes obtained along different,

arbitrarily selected trajectories of the same system, are

generally identical. This can be expected since local

strong accessibility, local observability and local

structural identifiability are properties of nonlinear

systems that, in general, have a global character.

Example 1 in this paper illustrated how, for a tiny set

of initial conditions, structural properties may change.

Last, but not least, we emphasize that the high

efficiency of the algorithm based on sensitivities

stems from their linear dynamics along trajectories.

This holds even if the system itself is nonlinear.
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Appendix 1: Dynamic model of the combined heat

and power system of a hotel building [33, 34] used

in Example 5

f x; u; hð Þ ¼

k1 x2 � x1ð Þ þ b1
V1

� x1
V1

� �
u1

k2 x1 � x2ð Þ þ x4
V2

� x2
V2

� �
u2

x2
V3

� x3
V3

� �
u2 þ

x4
V3

� x3
V3

� �
u3

x6
V4

� x4
V4

� �
u4

x3
V5

� x5
V5

� �
u4

x7
V6

� x6
V6

� �
u7 þ

x9
V6

� x6
V6

� �
u9 þ

x12
V6

� x6
V6

� �
u5

k7 x8 � x7ð Þ þ x5
V7

� x7
V7

� �
u7

k8 x7 � x8ð Þ þ b2
V8

� x8
V8

� �
u8

k9 x10 � x9ð Þ þ x5
V9

� x9
V9

� �
u9

k10 x9 � x10ð Þ þ b3
V10

� x10
V10

� �
u10

x5
V11

� x11
V11

� �
u5 þ

x12
V11

� x11
V11

� �
u12

x11
V12

� x12
V12

� �
u11

k13 x14 � x13ð Þ þ x12
V13

� x13
V13

� �
u11

k14 x13 � x14ð Þ þ b4
V14

� x14
V14

� �
u6

2
66666666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777777775

;

ðA1Þ

h ¼ V1; V2; ::;V14; k1; k2; k7; k8; k9; k10; k13; k14; b1; b2; b3; b4½ �T

ðA2Þ

Appendix 2: Proof of generic equivalence

between SERC and LARC for local strong

accessibility and local observability

Proof for local strong accessibility

Concerning local strong accessibility, the examples in

this paper show that the rank given by SERC equals

the one given by LARC, provided the selected

trajectory (2.3) of system (2.1) is nonsingular, as

shown in Fig. 12. For local strong accessible systems

(2.1), it is proved in [37] that trajectories (2.3) of

system (2.1) are generically nonsingular. Then,

LARC gives full rank for xL in Fig. 12 while SERC

generically does, namely if the selected trajectory

(2.3) of system (2.1) containing xL is nonsingular. In

this appendix, we will prove that if the rank obtained

123

Sensitivity matrices as keys to local structural system 2615



from LARC is not full, SERC still generically

produces the same rank for xL in Fig. 12. To that

end, we will first summarize the proof given in [37],

when the rank obtained from LARC is full.

Theorem 2 in [37] states that for local strong

accessible systems, trajectories are generically non-

singular. Its proof relies mostly on proposition 2.1 in

[37]. This proposition concerns an observability-

related property developed in [39]. Recall that LARC

for local strong accessibility is fully determined by the

dynamics (2.1). The proof of theorem 2 in [37]

requires extension of these dynamics with

dQ tð Þ
dt

¼ A tð ÞQ tð Þ þ Q tð ÞA tð Þ
þ B tð ÞBT tð Þ; t� t0; Q t0ð Þ

¼ 0 ðA3Þ

A tð Þ ¼ df

dx
x tð Þ; u tð Þð Þ; B tð Þ ¼ df

du
x tð Þ; u tð Þð Þ; Q tð Þ

2 Rn�n

ðA4Þ

In addition, the following output equation is

required:

ye tð Þ ¼ he x tð Þ;Q tð Þð Þ ¼ det Q tð Þð Þ: ðA5Þ

Note that, Q tð Þ, t[ t0 in (A3) is the controllability

matrix of the time-varying linear system (2.18) that

describes the propagation of sensitivities. If Q tð Þ,
t[ t0 is not full rank, the linear dynamics (2.18) is not

controllable and the trajectory is singular. In that case,

the determinant of Q tð Þ, t[ t0, being the output ye tð Þ
in (A5), equals zero. System (2.1), extended with (A3),

(A5), when written in the standard state-space format

becomes

dxe tð Þ
dt

¼ fe xe tð Þ; u tð Þ; hð Þ ¼
f x tð Þ; u tð Þ; hð Þ

st A tð ÞQ tð Þ þ Q tð ÞA tð Þ þ B tð ÞBT tð Þð Þ

� �
;

xe tð Þ ¼
x tð Þ

st Q tð Þð Þ

� �
;

ðA6Þ

ye tð Þ ¼ he xe tð Þð Þ ¼ det Q tð Þð Þ; ðA7Þ

where st denotes the stack operator that stacks all

columns of the matrix argument, starting with the first

one. The proof of theorem 2 in [37] comes down to

show, by means of proposition 2.1, that trajectories

having initial state xe ¼
x
0

� �
, generically, do not

produce a zero output ye tð Þ in (A5), and therefore are

nonsingular. To obtain this result, local strong acces-

sibility of system (2.1) is required to guarantee that

every state xe ¼
x
0

� �
of the extended system belongs

to the set G, mentioned in proposition 2.1 of [37].

Here, we would like to establish generic equiva-

lence for any rank given by LARC, for any xL in

Fig. 12. This can be achieved since f in (2.1) is

assumed analytic. Then, the Hermann Nagano theo-

rem [5] holds, according to which the state space

separates into one or more manifolds having equal or

different dimensions. Then by Chow’s theorem [5], a

realization of each manifold exists, that is local strong

accessible, having a state dimension equal to the rank

given by LARC. Given their local strong accessibility,

we are allowed again to apply the proof given in [37],

to these realizations. This proves the generic equiva-

lence between SERC and LARC for any rank, and for

any state xL in Fig. 12.

Proof for local observability

For local observability, to show that the rank from

LARC generically equals the one from SERC, we can

again apply proposition 2.1 from [37]. Now, LARC is

obtained from Lie differentiation instead of Lie

bracketing [5], [7], [8] and nonsingular trajectories

are those leading to an observable linear system (2.14).

Therefore, we must extend the dynamics (2.1) with

dynamics describing the observability matrix propa-

gation of the time-varying linear system (2.14),

dQ tð Þ
dt

¼ AT tð ÞQ tð Þ þ Q tð ÞAT tð Þ
þ CT tð ÞC tð Þ; t� t0; Q t0ð Þ

¼ 0; ðA8Þ

A tð Þ ¼ df

dx
x tð Þ; u tð Þð Þ; C tð Þ ¼ dh

dx
x tð Þ; u tð Þð Þ; Q tð Þ

2 Rn�n;

ðA9Þ

while taking as the output,

ye tð Þ ¼ h x tð Þ;Q tð Þð Þ ¼ det Q tð Þð Þ: ðA10Þ

If Q tð Þ, t[ t0 is not full rank, the linear dynamics

(2.14) are not observable and the trajectory is singular.

In that case, the determinant of Q tð Þ, t[ t0, being the
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output ye tð Þ in (A10), equals zero. The state-space

representation of the extended system now becomes

dxe tð Þ
dt

¼ fe xe tð Þ; u tð Þ; hð Þ ¼
f x tð Þ; u tð Þ; hð Þ

st AT tð ÞQ tð Þ þ Q tð ÞAT tð Þ þ CT tð ÞC tð Þð Þ

� �
;

xe tð Þ ¼
x tð Þ

st Q tð Þð Þ

� �
;

ðA11Þ

ye tð Þ ¼ he xe tð Þð Þ ¼ det Q tð Þð Þ: ðA12Þ

Again the proof follows from proposition 2.1 of

[37] if all states xe ¼
x
0

� �
of the extended system

belong to the set G, mentioned in proposition 2.1.

Now, this requires the original system (2.1), (2.2) to be

local observable. That this is so follows from appli-

cation of the same proposition 2.1, now taking (2.1) as

the system and (2.2) as the output. So if LARC gives

full rank for any xL in Fig. 12, SERC generically does,

namely if the selected trajectory (2.3) of system (2.1)

is nonsingular.

To establish generic equivalence between LARC

and SERC for any rank, we rely on our assumption that

f in (2.1) and h in (2.2) are analytic. Then, the

Hermann Nagano and Chow theorems [5] provide us

with local accessible realizations of each manifold in

which the state space separates. Moreover, these

realizations each preserve the observation space, the

dimension of which equals the rank obtained from

LARC. Next, for each of those realizations, we may

obtain a minimal realization that also preserves the

observation space [7]. This minimal realization is

locally observable and has a state dimension equal to

the one of the observation space given by the rank

obtained from LARC. Because these minimal realiza-

tions are locally observable, we may apply proposition

2.1 of [37] again, which proves the generic equiva-

lence between LARC and SERC for any rank, and any

state xL in Fig. 12.
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