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Abstract: Within a recent development of algorithms to establish local structural identifiability, local observability and 

local strong accessibility of nonlinear systems, it turned out that sensitivities, governed by linear time-varying dynamics, 

are fundamental. As to local strong accessibility of nonlinear systems, the algorithm essentially checks controllability of 

linearizations along trajectories of the nonlinear system. In the literature concerning local controllability of nonlinear 

systems on the other hand, examples are regularly presented illustrating that controllability of linearizations is a stronger 

property than local strong accessibility. This paper clarifies these apparently contradicting results by using an important 

theoretical result from the literature and several illustrative examples. These reveal that the Lie algebraic rank condition 

(LARC), that is currently used to check local strong accessibility, may indeed be replaced by a rank condition based on 

sensitivities (SERC), that essentially checks controllability of linearizations along trajectories, provided that these 

trajectories are taken to be non-singular. This replacement is important for two reasons. One is that the computation of 

LARC requires a finite, but a-priori unknown number of steps, which may be very large. The other is especially important 

for large-scale nonlinear systems, for which the large number of symbolic differentiations involved in LARC results in 

excessive computation times or even renders the calculation infeasible. Both phenomena are also illustrated with 

examples. 

Keywords: Nonlinear systems, local controllability, local strong accessibility, Lie algebraic rank condition (LARC), sensitivity rank 

condition (SERC), linearization, trajectories. 

 

 

1 Introduction. 

Controllability of a dynamic system concerns the ability to 

steer the system from an arbitrary state to any other, by means 

of control input signals applied to the system. This property 

ensures that proper control of such a system is always possible. 

If the system is linear, controllability is a property that holds 

globally while for nonlinear systems this may no longer be the 

case. Local definitions of controllability have been developed 

for nonlinear systems. Of these definitions local controllability 

(LC) and local strong accessibility (LSA) became especially 

important [1]. LSA has the advantage that it can be verified 

computationally through what is called the Lie Algebraic Rank 

Condition (LARC) [1]-[8]. This condition is necessary and 

sufficient for LSA, and necessary but not sufficient for LC [1]. 

Still, algorithms to compute LARC may be infeasible for two 

different reasons. Firstly, the computation of LARC requires an 

a-priori unknown number of steps, which may be very large [9]. 

Secondly, for large-scale nonlinear systems, the computation 

of LARC requires a large number of derivatives that have to be 

computed symbolically [1]. Therefore an alternative that is 

much more efficient computationally would be very attractive 

[9]-[13].  

To establish local structural identifiability of nonlinear 

systems a very efficient algorithm was presented in [14]. The 

key idea to approach this problem is to calculate sensitivities 

along trajectories. These sensitivities are governed by linear 

time-varying dynamics. It turned out that the same approach is 

easily adapted to also establish local observability and LSA of 

nonlinear systems [15]. The analysis in [15], [16] reveals that 

the rank condition based on sensitivities (SERC) to establish 

LSA, essentially establishes controllability of linearizations 

(CL) along trajectories. But statements are regularly made in 

the literature that CL is a stronger property than LSA [7], [8]. 

There is even commonly used terminology for systems “having 

an uncontrollable linearization” while being LSA [17]-[21]. On 

the other hand, a considerably less known but important 

theoretical result from the literature states that LSA implies CL 

along non-singular trajectories. Moreover, trajectories are 

generically non-singular [22]-[24]. All this implies the 

following relations between the system properties LC, LSA 

and CL and satisfaction of SERC and LARC, 

 LC LSA LARC SERC CL
generically

 ⇔ ⇔
⇐

  (1.1) 

The relations (1.1) are further explained in section 2. By 

means of examples, in section 3, the generic equivalence 
between LARC and SERC is further illustrated together with 

problems to compute LARC. In section 4, using SERC, these 

problems are solved. For one large-scale example we show 

how SERC heavily outperforms LARC in terms of 

computational efficiency. The efficient algorithm by which we 

compute SERC is presented in a companion paper [16] that 

extends results presented in [14], [15]. 

2 Relating LC, LSA, LARC, SERC and CL. 

Consider a nonlinear, continuous-time system represented in 

state-space form by, 
 

 ( ) ( )( ), , , ,n m
x f x t u t f x u= ∈ ∈ɺ ℝ ℝ , (2.1) 

 
In equations (2.1), t  denotes continuous time, x  is a vector 

containing the states and u  a vector containing the controls of 
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the system. Furthermore f  is an analytic vector function 

determining the system dynamics. Let, 
 

 ( ) ( ) 0, , fu t x t t t t≤ ≤ ,  (2.2) 
 
denote a control and state trajectory satisfying differential 

equation (2.1) with 
0 , ft t  representing the initial and final time. 

SERC is based on sensitivities that propagate along a trajectory 

(2.2) according to linear time-varying dynamics. These 

dynamic equations are precisely those that describe the 
linearization along the trajectory (2.2) [15], [16]. 

Linearizations along trajectories are often conceived as 

approximations that hold close to the trajectory. The crucial 

insight provided by the development of SERC is that the 

linearization is not an approximation but an exact description 

of the propagation of sensitivities along trajectories [15], [16].  

As a result SERC in (1.1), which we will use to determine LSA, 

also determines controllability of the linearization along the 

trajectory (CL) [15], [16]. This explains the equivalence 

between SERC and CL in (1.1). 

 

Next consider LARC used to check LSA. To compute it, the 
system (2.1) is assumed to be linear in the input, 
 

 
( ) ( )( ) ( )( ) ( )( ) ( )

( )( )

0

1

, ,

, 0,1,2,.., .

m

i i

i

n

i

f x t u t f x t f x t u t

f x t i m

=

= +

∈ =



ℝ

  (2.3) 

 

If the so called drift term ( )( )0 0f x t =  in (2.3), then LSA in 

(1.1) becomes equivalent to LC [1], [8]. LARC that verifies 

LSA is fully determined by the vector fields ( ) ,if x  

1,2,..,i m= . These determine directions in state-space in 

which the system can be steered locally [1], [8]. When 

evaluated at some 
ex x= , vectors ( ) ,i ef x  1,2,..,i m=  are 

obtained. If these together span n
ℝ   the system is LSA from 

ex x= . If not, additional directions in which the system can be 

steered locally are obtained from so called Lie brackets 

operating on two vector fields. For some 1, 2,..,i m=  and 

1,2,..,j m=  the Lie bracket denoted by ( ) ( ),i jf x f x    

operates on the two vector fields ( )if x , ( )jf x  and generates 

from them another vector field of dimension n  as follows, 
 

 ( ) ( )
( )

( )
( )

( ),
j i

i j i j

f x f x
f x f x f x f x

x x

∂ ∂
  = −  ∂ ∂

.  (2.4) 

 
When the Lie Bracket (2.4) is evaluated at 

ex x= , denoted by 

( ) ( ) ( ),i j ef x f x x   , this vector  represents a possibly new 

direction in which the system can be steered locally at ex x= . 

Every new vector field obtained from (2.4) may be used in 

consecutive Lie brackets (2.4) replacing either ( )if x  or 

( )jf x . One may stop computing additional vector fields if 

their evaluations at 
ex x=  together span n

ℝ . Equivalently, the 

matrix with as columns evaluations of the vector fields at 

ex x=  then has full rank n . In that case, at 
ex x= , LARC is 

satisfied and the system is LSA from 
ex x= . If LARC fails, i.e. 

if n
ℝ  is not spanned, one may also stop if any additional new 

vector field no longer increases the dimension of the space 

spanned by evaluations at 
ex x= . Unfortunately, in general 

there is no known stop criterion for this [9], except when the 

system has no singular points [2] and the rank obtained from 

LARC is identical for each state. For this reason, computing 

LARC can be problematic and is also very exhaustive, since the 

number of vector fields obtained from recursive application of 

(2.4) grows heavily [1], [9], [25]. These problems will be 

illustrated and discussed by means of an example in section 3. 

To solve them, SERC will replace LARC in section 4. 
 

An important difference between LARC and SERC is that 

LARC restricts computation to a single state 
ex x=  for which 

it computes finitely many terms of a Fliess series expansion 

determined by Lie Brackets [7], [8]. SERC on the other hand 

considers sensitivities propagating along a full trajectory (2.2) 

containing 
ex x= as a state. This captures all terms of the Fliess 

series at once. A trajectory of an LSA system is called 

non-singular in [22] if the linearization along it is controllable. 

It is proved in [22] that trajectories of LSA systems are 

generically non-singular. This is represented by the important 

generic implication in (1.1) that justifies the replacement of 

LARC by SERC.  

It is important to distinguish between the singular 

trajectories defined in [22], and singular trajectories on which 

LARC itself produces a reduced rank. The latter implies that 

LSA does not hold on the trajectory. In section 3, Example 2 

illustrates that LARC and SERC also produce the same rank on 

such trajectories. This is proved in [16]. 

 

3 Examples illustrating SERC versus LARC. 

Through examples, in this section, we further explore the 

generic equivalence in (1.1) of LARC with SERC/CL as 

presented in [15], [16]. Next we explore the high efficiency of 

SERC as compared to LARC. To further explore the generic 

equivalence of LARC with SERC/CL, consider a common, 

well-known example from the literature that is often used to 

argue against this equivalence. 
 

Example 1 (Classic car parking problem from [2]) 

The dynamics of the car is given by (2.1) with, 
 

 ( )

( )
( )

( )

3 4

3 4

1 2

4

0cos

0sin
,

0sin

10

x x

x x
f x u u u

x

+   
   

+   = +
   
   

  

.  (3.1) 

 
This is also described by equation (2.3) with, 
 

2646



 

 

 

 

( ) ( )

( )
( )

( )
( )

3 4

3 4

0 1 2

4

0 0cos

0 0sin
, ,

0 0sin

0 10

x x

x x
f x f x f x

x

+    
    

+    = = =
    
    

    

.  (3.2) 

 
Thus the system is linear in the input, as is required for LARC. 

Common trajectories around which to linearize are steady-state 

trajectories. For the system (2.3), (3.2) each state is a steady 

state when one selects, 
 

 
0

0
u

 
=  
 

.  (3.3) 

 

Such a linearization yields, 
 

( ) ( )
( ) ( )

( )

( )
( )

( )

1 3 4 1 3 4

1 3 4 1 3 4

1 4

3 4

3 4

4

0 0 sin sin

0 0 cos cos

0 0 0 cos

0 0 0 0

0cos

0sin

0sin

10

u x x u x x

u x x u x xdf

dx u x

x x

x xdf

du x

− + − + 
 

+ + =
 
  
 

+ 
 

+ =
 
 
 

  (3.4) 

 
In view of equations (3.3), (3.4), the time-invariant 

linearization around a steady state is described by, 
 

 ( )
0

,
0

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

x u

df
A t A

dx  
= 
 

 
 
 = = =
 
 
 

( )

( )
( )

( )

3 4

3 4

0
, 4

0

0cos

0sin

0sin

10

x u

x x

x xdf
B t B

du x 
= 
 

+ 
 

+ = = =
 
 
 

  (3.5) 

 
It is well known that to determine controllability of these 

time-invariant linearizations we may calculate the rank of the 

controllability matrix C  given by [27], 
 

 2 1, , ,..., , 4n
C B AB A B A B n

− = =  .  (3.6) 

 
Since 0A = , we find that the rank of controllability matrix C  

in (3.6) equals the rank of B , which equals 2 according to 

equation (3.5). Therefore controllability matrix C does not 

have full rank 4, and all linearizations around steady state 

trajectories are indeed uncontrollable. On the other hand, 

LARC for any state comes out at 4 establishing LSA from each 

state [2]. The difference between these two results is, however, 

only caused by the choice of trajectories around which to 

linearize. From (3.3) these have the special property 

( ) 0,u t t= ∀  resulting in steady state trajectories. From 

/df dx  in (3.4) observe that the choice 
1 0u =  “switches off” a 

large part of the linearized dynamics, destroying controllability 
of these. The steady state trajectories obtained in this way are 

called singular trajectories whereas the vast majority of 

trajectories is non-singular [22] causing the generic 

equivalence between LARC and SERC in equation (1.1) 

Therefore, if we select ( )u t , 
0 ft t t≤ ≤  in (2.2) arbitrarily, 

steady state trajectories are not generally obtained but 

trajectories having linearizations that are controllable [15], 

[16]. In the car parking example, linearization around an 

arbitrarily selected trajectory is controllable as we will 

calculate in section 4. This reflects the generic equivalence in 

equation (1.1). If in doubt about the non-singularity of the 

trajectory, one could analyze several trajectories. 

The next example concerns a nonlinear system having 

singularities for which there is no known termination criterion 

when computing LARC. 
 

Example 2 

Consider the system (2.3) with, 
 

( ) ( ) ( )

2

2

2

0 1 2 3

2

1

0 0

0 , 0 ,

1 0 0

x

f x f x f x x

x

    
    

= = =    
    −    

  (3.7) 

 

One can easily see that for states [ ]1,0,0
T

x ≠ , the time 

derivative 
3xɺ  will be nonzero and therefore 

3x  will become 

non-zero. With a non-zero 
2u , also time derivative 

2xɺ  and 

with it 
2x  and 2

2x  will become non-zero, and finally, with a 

non-zero 
1u , also time derivative 

1xɺ  and with it 
1x . Since 

1x  

determines the time derivative 
3xɺ , the system is LSA from all 

states [ ]1,0,0
T

x ≠ . On the other hand, state [ ]1,0,0
T

x =  is a 

steady state that moreover is unaffected by the control u . 

Therefore it is a singular state with zero as the outcome of 

LARC. 

The algorithm to compute LARC, as presented in [2], is 

implemented in a Mathematica package called ProPac. It 

implements a stopping condition that relies on the assumption 

that no singular states exist. Although this assumption is 

violated, we still ran the algorithm from ProPac version 7.0 in 

Mathematica 11.2 on a PC having a 3.10 gigahertz Intel Core 

i5-8600 processor with operating system Windows 10. It gives 

3 for the rank, implying that the system is LSA from each state. 

Apart from the singular state [ ]1,0,0
T

x = this is correct. The 

algorithm also offers the possibility to specify a specific state 

for evaluation. When specifying such states however, results do 

become erroneous for several states, as listed in Table 1. The 

ProPac algorithm then stops prematurely because the 

assumption underlying the stopping condition is invalid. 

Since there is no known stopping condition in this case, the 

only thing one can do is to continue recursive computation of 

Lie brackets (2.4). We implemented an efficient algorithm to 
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do so in Mathematica and used it on the PC described above. 

The algorithm recursively computes so called P. Hall bases of 

increasing orders [25], [26] generated by the vector fields 

( ) , 0,1,.., 3if x i m= = in (3.7). After each increase of the order, 

it checks if the basis spans 3n
R R= . If so, the algorithm 

terminates. Otherwise it continues until a specified maximum 

order is reached. The P. Hall basis incorporates the 

anti-symmetry and Jacobi identity properties of Lie Brackets 

which significantly reduces the number of recursive Lie 

Bracket computations (2.4) without affecting the rank [25], 

[26]. To determine LSA  from 
ex x= , when checking the rank 

one must exclude the drift term ( )0f x  from these bases [8]. 

 

 

Table 1: Rank obtained from the ProPac algorithm [1] when 

specific states are specified. The correct rank and 

corresponding order of the P. Hall basis are also shown. 
 

 

Table 2: Number of Lie Brackets L and corresponding CPU 

times in seconds of P. Hall bases up to order 15 for Example 2 

and state [ ]0,0,0
T

. 

 

Then, for several states, Table 1 also records the order of the 

P. Hall basis needed to find the correct rank. The interesting 

case is [ ]0,0,0
T

x =  where the appropriate rank only comes out 

for a P. Hall basis having a very high order of 15. Table 2 

records the number of Lie Brackets and corresponding CPU 

times to compute P. Hall bases up to order 15 for Example 2 

and state [ ]0,0,0
T

. The number of Lie Brackets is 3 less than 

the number of elements of the P. Hall bases [26] since ( )if x , 

0,1, 2i =  are the only 3 elements of each basis not obtained 

from Lie Bracketing. They are called the generators of each 

basis  [25], [26]. As can be seen, with increasing order, the 

computations become very time consuming.  

In the next section we will demonstrate how SERC, which 

will replace LARC, very efficiently computes correct results 

for all states, even if these are singular. 

Example 3: (High dimensional example of a truck with N 

trailers [28]) 

This system concerns a truck with N  trailers, where N  can be 

selected arbitrarily. Index 0k =  refers to the truck and indices 

1,2,..,k N=  to the N  trailers. The state variables 
2 1kx +

, 

0,1,..,k N=  represent orientation angles of the axes of the 

truck and N  trailers, respectively. There are two control 

variables 
1u , 

2u , being truck velocity and truck steering wheel 

angular velocity. Then the first order differential equations 

represented in state-space form (2.1) are given in recursive 

form by, 

 

1 2 2 2 0 1, , ,x x x u v u= = =ɺ ɺ  

( ) ( )1 2 1 2 1 1 2 1 2 1 2cos sin ,k k k k k k k kv v x x M x x x− − + − − += − − −  

2 1 2 2 ,k kx x+ +=ɺ  
 

( )

( )

2 1 2 1

2 2

1 2 1 2 1 2

sin

cos
, 1, 2,.., .

k k k

k

k

k k k k

k

v x x
x

L

M x x x
k N

L

− +

+

− − +

−
=

−
− =

ɺ

  (3.8) 

 
Here 

kv  is the velocity of truck/trailer k , 
kL  distance from the 

axle of the previous truck/trailer 1k −  to the hitching point of 

trailer k , and 
kM  distance of the axle of trailer k  to the 

hitching point of the same trailer. For this specific example, an 

analysis that does not require LARC could be used to prove that 

the system is LSA [28]. With SERC replacing LARC, the same 

result is obtained in the next section. Moreover, using SERC 

we will also establish LSA when only 
2u  is used to control the 

system, taking 
1 0u = . Finally, using SERC we will find that 

using only 
1u  to control the system, taking 

2 0u = , will fail to 

control states 
1x  and 

2x . 

 

4  Replacing LARC with SERC 

Using the efficient algorithm from [16], which is implemented 

in Matlab 2019, on the very same PC as described in section 3, 

we will now compute SERC to determine LSA. SERC 

determines the rank of a sensitivity matrix through a singular 

value decomposition (SVD). If the sensitivity matrix is not full 

rank, implying that one or more singular values are zero, this 

SVD also provides a so called “LSA signature”. This signature 

displays the left singular vectors of the sensitivity matrix 

corresponding to zero singular values. These singular vectors 

represent directions in state-space along which the state cannot 

be changed. For details concerning the algorithms and their 

implementation, and the display of the “LSA signature” we 

refer to [15], [16]. In this section we only present and explain 

their outcome for the examples presented in the previous 

section, as well as CPU times. 

For Examples 1-2, Table 3 lists the singular values of the 

sensitivity matrix. If these are not numerically zero, LSA is 

established. Roughly, singular values are considered 

State: 0

0

0

 
 
 
  

 

1

0

0

 
 
 
  

 

0

1

0

 
 
 
  

 

0

0

1

 
 
 
  

 

1

1

0

 
 
 
  

 

1

0

1

 
 
 
  

 

0

1

1

 
 
 
  

 

ProPac rank: 0 0 1 1 2 1 2 

Correct rank: 3 0 3 3 3 3 3 

Order: 15 1 3 7 5 4 3 

Ord: 4 5 6 7 8 9 

L: 29 77 193 505 1315 3499 

CPU: 1.469 3.328 7.672 19.313 49.547 131 

Ord: 10 11 12 13 14 15 

L: 9379 25483 69703 192343 533827 1490403 

CPU: 350 954 2636 7494 22463 73209 
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numerically zero if they are in the order of the machine 

precision (10-16) or when the singular values contain a 

significant gap [29]. The singular values below such a gap are 

then considered to be numerically zero. From Table 3, LSA is 

correctly established in each case except for [ ]1,0,0
T

x =  in 

Example 2. In that case the algorithm correctly produces only 

zero singular values corresponding to rank zero.  

 

  

 
 

For the large-scale Example 3, with 19N =  trailers and 40  

state variables, Fig. 1 graphically represents the singular values 

of the sensitivity matrix on a logarithmic scale, for three 

different cases. The high efficiency of the algorithm results in 

computation times of only 11.6, 7.6 and 5.6 seconds. The 

results confirm LSA, except when only 
1u  is used to control 

the system. In that case the two left singular vectors making up 

the LSA signature in Fig. 2 indicate that the state cannot be 

controlled in the directions 
1x  and 

2x . The latter implies that 

both truck position angle 
1x  and its time-derivative 

2 1x x= ɺ  

cannot be controlled when truck velocity 
1u  is the only control 

variable, while taking 
2 2 0x u= =ɺ . 

 

Fig. 1: Singular values of the sensitivity matrix for Example 4 

with 19N =  trailers and 3 different sets of control variables 

{ }1 2,u u , { }2u , { }1u  respectively. CPU times: 11.6, 7.6, 5.6 

seconds respectively. 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 40

Index

10
-20

10
-15

10
-10

10
-5

10
0

 
Singular values when both 

1 2,u u  are used for control 

 

 
Singular values when only truck steering wheel angular 

velocity 
2u  is used for control 

 
Singular values when only truck velocity 

1u  is used for control. 

Fig. 2: LSA signature corresponding to control with only 

1u .Components of the two left singular vectors are shown; blue 

dots for the first and red crosses for the second singular vector. 

These indicate control is not possible in the 
1x  and 

2x  

directions. 

 
 

 

Example 1: 2.236806 2.235359 0.064377 0.022854 

Example 2: 

[ ]1,0,0
T

x ≠  

1.723037 0.389012 0.017462  

Example 2: 

[ ]1,0,0
T

x =  

0 0 0  

Table 3: Singular values of the sensitivity matrix for 

Examples 1-2. 
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5 Conclusions 

 As opposed to the Lie algebraic rank condition (LARC), the 

sensitivity rank condition (SERC) is computed with a very high 

efficiency. This makes SERC especially suitable for large-scale 

nonlinear systems as illustrated by Example 3 and in [16]. 

Satisfying SERC along a trajectory is equivalent to 

controllability of the linearization (CL) along that trajectory. 

Controllability of the linearization along an arbitrarily selected 

trajectory of a nonlinear system is generically equivalent to 

satisfying LARC for all states on that trajectory. The generic 

nature of the equivalence is caused by the fact that the 

equivalence only holds for non-singular trajectories, as defined 

in [22], which represent the vast majority. When in doubt about 

the non-singularity, several trajectories should be considered. It 

is important to distinguish between the singular trajectories 

defined in [22], which fail the equivalence between LARC and 

SERC/CL and singular trajectories on which LARC itself 

produces a reduced rank. The latter implies that local strong 

accessibility (LSA) does not hold on the trajectory. As shown 

by Example 2, when [ ]1,0,0
T

x = , LARC and SERC also 

produce the same rank on such trajectories. A proof of this is 

presented in [16].  

Using the well-known classic car parking problem, the 

generic equivalence between LARC and SERC/CL was 

illustrated. Ironically, this problem has so far been used to 

argue against the equivalence, which formally is correct when 

singular trajectories, mostly steady states, are considered too. 

For a very long time, this argument has probably withheld 

researchers in the systems and control community to use 

controllability of linearizations along trajectories (CL) to 

establish local strong accessibility (LSA) of nonlinear systems. 

The first author has been investigating properties of 

time-varying linearizations along trajectories for the purpose of 

designing linear perturbation (output) feedback controllers for 

nonlinear systems. Only when presented with an efficient 

algorithm to determine local structural identifiability of 

nonlinear systems, based on sensitivities, by the second and 

third author [14], the generic equivalence became apparent as 

confirmed by [22]. Considering sensitivities reveals that 

linearizations along trajectories are exact descriptions of these 

[15], [16], not approximations which they are when designing 

perturbation feedback controllers. 

As to realizing nonlinear controllability in actual practice, 

control variations along a trajectory are much more easily 

realized than controls switching very fast over a very small 

time-interval. The former is approximately described by 

linearizations along trajectories while the latter underlies 

LARC. 
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