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Abstract 
Time-optimal controls for 2-link robots are often of 
bang-bang type. Many algorithms to solve time- 
optimal robot control problems a-priori assume the 
optimal control to be bang-bang. Industrial robot,s 
very often have 5 or 6 links and then the associated 
time-optimal controls are usually singular. This paper 
presents a new algorithm that enables computation 
of both bang-bang and singular time-optimal controls 
for robots. The algorithm usw both the conjugent 
gradient and Gauss-Newton method to enhance its ef- 
ficiency and does not require state-parameterization, 
which introduces additional errors. The algorithm is 
used to compute time-optimal controls for an indus- 
trial 5 link robot model including gravity and viscous 
friction. 

1 Introduction 
Motion time of an articulated manipulator plays a cru- 
cial role in the productivity of robots in industrial ap- 
plications. We focus in this paper on the point-t* 
point time-optimal control problem (PTPTOC): find 
the control that brings the manipulator from the ini- 
tial position to the final position in minimum time, 
while taking into account the dynamics of the robot, 
constraints on the torques, friction and gravity. The 
robot model can be written in state-space, with the an- 
gular position and velocity as states. The PTPTOC 
can then be formulated as a nonlinear optimal control 
problem with free final time, finel state constraints and 
bounded controls. 

1.1 Related work 

Many researchers have attempt,ed to solve the PTP- 
TOC. The developed methods can be divided into 
three categories: standard opiimal control, control 
parametrization and full parametrization methods. 

The standard optimal control methods use Pon- 
tryagin’s Maximum Principle (PNIP) to rewrite the 
optimal control problem into a two-point bound- 
ary value problem (TPBVP). Foutouhi-Chaouki and 
Szyszkowski [l] and Nleier and Bryson [a] used shoot- 
ing and gradient method respectively to solve the TP- 
BVB. These algorithms assume bang-bang control, but 
in the case the time-optimal control problem is singu- 
lar this does not lead to optimal solutions [3]. Chen 
and Huang [4] computed smooth controls on singular 
trajectories with a sequence of non-singular problems 
that converge to the original problem. 

Several algorithms have been developed that use 
control parametrization. A piecewise constant para- 
metrization of the controls is justified by the digital 
nature of the controller. Van Willigenburg and Loop 
[3], Geering et al. [5] and Dissanyake et al. [6] present 
similar algorithms with this approach. 

The PTPTOC for robots with > 2  DOF has only 
been solved in the literature mith the full parametriza- 
tion method, which uses both state and control para- 
metrization. Saramago and Steffen [7] use cubic poly- 
nomials to interpolate the joint angles between two 
sample intervals, whereas Fang and Dissanayake [SI 
use first order polynomials. Bezier splines are used by 
Dubowsky et al. [9] and Shiller and Dubowsky [lo]. 
They calculate the controls that make the robot tra- 
verse the parametrized path by solving the fixed path 
motion planning problem. A drawback of these meth- 
ods is that parametrization of the states introduces 
additional errors because the state trajectories do not 
satisfy the model equations. 

Many robots in the industry have more than 2 DOF. 
In the case of increasing DOF the probability of time- 
optimal controls being singular increases, because the 
probability of some links having to “wait” on others 
increases. However, to our best knowledge all papers 
using standard optimal control or control parametriza- 
tion present only solutions for a 2-DOF robot. Sum- 
marizing, it seems that there is no method in the liter- 
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ature that computes singular time-optimal controls for 
>2DOF robots without introducing additional errors 
through state parametrization. Such an algorithm is 
presented in this paper. 

1.2 Proposed method and outline 
Section 2 presents the dynamic equations of the robot 
model and the control problem. The optimization al- 
gorithm is described in Section 3. Starting from the 
gradient algorithm of Bryson [ll], we added a "clip- 
ping function" to enforce the control bounds. To en- 
hance the efficiency and accuracy a line search has 
been added aiid conjugate gradients are introduced. 
To further enhance the efficiency we combined the gra- 
dient method with a Gauss-Newton method. In Sec- 
tion 4 results are presented on a simulation model of 
a 5-DOF direct drive robot with viscous friction and 
gravity. Concluding remarks are presented in Section 
5. 

2 Time-optimal control problem 
Consider a robotic manipulator with m rotational 
joints. It is assumed that the joints are rigid-body 
elements and are driven by direct-drive motors. If the 
joint angles are described by the m x 1 vector 8 they 
can be described as follows [la]: 

M ( O ) A + V ( 8 , 8 )  + G ( o ) + F ( h )  = r  (1) 

is symmetric positive definite 
inertia matrix, V 8,B E Rmxl represents the Corio- 

lis and centrifugal forces, G (0) E Rmxl represents the 
gravity forces, F 8 E RWmxl'are the viscous friction 
forces and T E EtnxX1 vector of actuator torques. We 
consider the following model for the viscous friction in 
the actuator: 

where Ad (0) E 

( I 
(I 

F ( 8 '1 =-Ke (2) 

where K E R""" is a diagonal matrix with on the 
diagonal the positive viscous friction coefficients. The 
motor torques are assumed proportional to the motor 
.current [13]. The torques are therefore considered as 
control variables. Bounds on the motor current are ap- 
plied to prevent overheating of the motors, which can 
be expressed in terms of the motor torques: 

TFin  5 T, 5 T , "  ( 3 )  

where rrin E R and E R are the lower and 
upper bouiid for the ith link respectively. By defining 
the joint positions and joint velocities as states (z = 

[ 0 9 1') and the torques as controls (T = U )  the 
following state-space representation is obtained: 

(4) 
The number of states is twice the number of links: 

n = 2m. In the remainder of this paper the state-space 
system in Equation (4) is written in the short form: 

j: = f ( 2 , U )  (5) 
where z E Etnx1  and U E Rmxl are the states and 

controls respectively and f : RnxlxRmxl- Rnxl 
represents the model equations. The point-to-point 
motion time-optimal control problem is formulated as 
follows: .find the control that brings the manipulator 
.from a specified initial position to  a specified final po- 
si t ion in minimum time,  while satis,fying the bounds 
o n  the controls. 

This is a nonlinear optimal control problem with free 

Problem 1: (t ime-optimal control problem: 
final time, fixed final state and bounded control: 

continuous-time .formulation) 

specified specified z (t init ial)  = z. initial . . , x ('final) = xfinal 

i e {1 ,2 ,  . . . > nz} > t E 10, tfinal] 

where 2sp,e@ed E Rnx l  and p e c i f i e d  E Rnxl are 
the specified initial and final states respectively. The 
decision variables of this minimization are the control 
trajectory U ( t )  and the final time tfinal. 

initial 

Control parametrization Given the digital nature 
of the robot controller, the controls are parametrized 
by piecewise constants. The time is divided into N 
equidistant control intervals. The final time is de- 
termined by the width of the control intervals At: 
tfinal = NAt  = t N .  The width of the control inter- 
val At becomes one of the degrees of freedom in the 
control problem. The beginning of the ICth interval is 
denoted by t k ,  k E {0,1, .  . . , N ~ 1) and t o  = 0 and 
t N  = tfinal = NAt .  In the equations in the remain- 
der of the paper, the time-index k relates to the time 
instant t k  k E {0,1, . . . , N - 1) and the axis-index i 
should be interpreted as i E {1 ,2 , .  . . , m}. 
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Final state We enforce the filial state constraint in 
Problem 1 by a quadratic penalty in the objective. 
This is different from Weinreb (md Bryson [14], who 
treat the final state constraint explicitly as equality 
constraint in their steepest desmnt method. They in- 
troduced extra weights on the control variables to en- 
force the bounds on the controls, which (as they ad- 
mitted) slowed the convergence of their algorithm. 

With these assumptions, Problem 1 can be cast into 

Problem 2: (time-optimal control problem: 
a discrete optimal control prob1c:m: 

discrete-time formulation) 

where Q E EXnx” is a positive diagonal weighting 
matrix and 11.1IQ denotes the 2-norm weighted with 
matrix Q. A quadratic penalty is chosen to assure 
smoothness of the objective function close to the opti- 
mum. 

3 The algorithm 

The gradient algorithm (“DOP3”’) of Bryson [ll] has 
been our starting point. Because this algorithm does 
not enforce bounds on the controls, we added a “clip- 
ping function”. Experiments with this method showed 
however that this algorithm converges prohibitively 
slow on the time-optimal control problem of a 5-DOF 
robot. We introduced an advanced line search, conju- 
gate search directions and combined the method with 
a Gauss-Newton method. The Causs-Newton method 
exploits the specific quadratic sixucture of the objec- 
tive function in Problem 2. First the basic algorithm 
will be briefly discussed. Then 
tensions. 

Basic algorithm Define the 
lows: 

v7e will discuss our ex- 

Hamiltonian H as fol- 

pt=t k +At 

where Ak+l  E Rnx l  is the co-state at time t k + l .  

The algorithm of Bryson makes steps in the “steep- 
est descent” direction. This direction is computed by 
differentiation of the Hamiltonian with respect to the 
decision variables: 

where UPrevious ’ and Atpreviolls are the decision vari- 
ables at the previous iteration of the algorithm. The 
sta.tes are computed by integration of Equation (4) in 
forward direction, with the decision variables set to 

and At = Aprevious . The co-states Ulc = U k  , 
are computed by backward recursion of the co-state 
equation (see Bryson [ll]). 

IC 

previous 

Clipping Our algorithm “clips” the controls at their 
extreme value to avoid that they violate the bounds. 
The sample time At is also clipped between bounds 
to prevent it to become negative or very large, which 
would cause numerical difficulties. 

min umax,  max umin ,  ? g W  = + a ~ , , ) )  (10) ( ( 
( Atnew = min Atmax, max (At””, At:1d + aSAtk)) 

where the functions min and max take the minimum 
and maximum value of each element i of two column 
vectors respectively. Atmin ancl Atmax are tuning para- 
meters set at 0.005 sec and 0.15 sec respectively. a E R 
is the step-size determined with the line-search. The 
clipping is in accordance with Pontryagin’s Maximum 
Principle (PMP). 

Conjugate gradient It is well known that a first- 
order gradient method as discussed above usually 
shows great improvements in the first iterations but 
has poor convergence characteristics as the optimal s e  
lution is approached. We improved the convergence of 
our algorithm with the conjugate gradient [15], i.e. an . 
estimate of the second-order terms using the results of 
the previous iterations. Let the step in the decision 
variables S U ~ ,  and Sat be stacked in one vector Sp: 

s p =  [ SUI Su2 . . .  SUN s a t  1’ (11) 

Suppose that the steps in the decision variables of 
the previous iteration (after clipping) are @Old and 
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the new steps &Pew (after clipping). The conjugate 
gradient direction SpCG is then computed as follows: 

Because in the first iteration there is no &Old, SpCG 
is computed in the first iteration as 6pCG = SpneW . The 
conjugate gradient direction SpCG is the direction that 
is used in the line search to determine the step-size. 

Line-search The line-search chooses the size a of 
the step that is made in the conjugate gradient direc- 
tion 6pcG. This step-size is not fixed as in the algo- 
rithm of Bryson [ll], but computed at each iteration. 
The line search algorithm searches for the step-size 
that minimizes the value of the objective function of 
Problem 2 .  The step-size is restricted to stay within 
a trust region expressed in terms of maximum steps in 
the controls and the sample time: 

6 ~ " ' ~  and Satma are tuning parameters set to 
Sumax - - .$,iLmax and &Atmax = 0.5sec. The model 
equations and the bounds on the decision variables are 
respected during the line search. 

Simulations have made clear that the range of opti- 
mal a's is very large. The steps are typically 0.5Au"" 
in the first iterations and become in the order of 
10-4~2Lm"x close to the optimum. A search is spread 
over this large range by trying 21 values for n: that are 
"logarithmicnlly equidistant" as follows: if the maxi- 
mum Q that satisfies Equation (13) is denoted amal 

21 values of n: are computed by a3 = ama (lop4)', 
j E {0,1,2, .  . . ,20}. This produces 21 values of n: 
where the smallest value equals lop4. A refined search 
of again 21 values is then performed in the neighbor- 
hood [al-l, cul+l] of the best al. The line-search has a 
k e d  computation time. 

Gauss-Newton The Gauss-Newton method [16] es- 
timates the quadratic terms more accurately than the 
conjugate gradient method, because it exploits the spe- 
cific structure of problem 2 .  The objective Jdiscrete in 
problem 2 is quadratic in the final state, which is a 
nonlinear function of the decision variables through 
the model dynamics. At each iteration, the dynamics 
are linearized along the state trajectory at the previous 
iteration. The linearizations are obtained by numeri- 
cal perturbation. 

By using the linearized states recursively at each 
sample instant, the final state is expressed linearly in 
terms of the decision variables. This approximated fi- 
nal state is inserted into the objective of problem 2, 
which reduces it to a quadratic problem with bounds 
on the controls. A small weighting matrix EI"+~ 
is added to the quadratic terms to prevent an ill- 
conditioned Hessian, which may lead to numerical dif- 
ficulties. E is a tuning parameter set to E = 1 . 10-~  
and E RNm+lxNm+l is the identity matrix. 
The resulting quadratic problem is solved with a stan- 
dard QP-solver and yields the steps in the decision 
variables SpGN. The line-search is used to determine 
the step size. 

Switching rule The optimization routine starts 
with the conjugate gradient method. After n C G  itera- 
tions it switches to the Gauss-Newton method, which 
is terminated when the steps in the decision variables 
are smaller than the tolerance value IIaSpGN(I < E .  

n C G  and E are tuning parameters set to n C G  = 3 and 
E = lop5 respectively. Then the algorithm switches 
back for nCg times to the conjugate gradient algo- 
rithm. If the step-size in all nCG steps is smaller 
than E ,  i.e. IIaSpCGII 5 E ,  the algorithm terminates. 
Otherwise, the algorithm switches back to the Gauss- 
Newton method. 

Software implementation We used Autolevl to 
generate the robot model in C-code. The C-code was 
embedded in a Matlab mex-file. The optimization rou- 
tine was written in Matlab2. For integration of the 
model equations we used the solver that is built-in 
Simulink-Matlab, the ode 45 Dormand Prince with 
variable step-size. Although the line search has a 
global nature, our algorithm is a local search method. 

4 Simulation results 

2-DOF Simulations with a 2-DOF robot were per- 
formed. Using the same piecewise constant control 
parametrization, we obtained a final motion time t f  = 
0.389 sec which is significantly shorter than the time 
t f  = 0.671sec reported by Dissanayake et.aZ. [6] for 
the same problem. Because this motion problem is 
non-singular, a bang-bang control parametrization was 
used by Dakev et.al. [17]. They reported a final mo- 
tion time of t f  = 0.387sec. The very small differ- 
ence must be attributed to our control parametriza- 
tion scheme, which does not allow bang-bang controls 
with arbitrary switching times. 

'OnLine Dynamics Inc. 
*The Mathworks, Inc. 
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5-DOF The method is applied to a simulation model 
of a 5-DOF robot. The Denavit-Hartenberg parame- 
ters are shown in Table 1. Thess3 parameters relate to 
the Eshed3 MK2 industrial robot. 

The Eshed Robotec hIK2 robot. 

The MK2 is a heavily geared robot resulting in al- 
most decoupled and linear dynamics. The model used 
in this paper however assumes th.e MK2 to be actuated 
by direct drive motors. In ternis of energy efficiency 
and speed of the robot direct drive motors are highly 
preferable. Moreover the highly nonlinear nature of 
the associated robot model ma,kes the time-optimal 
control problem much more difficult and challenging. 
The masses of the links are located at the center of the 
link. Tables 2 and 3 give the dynamic parameters. The 
bounds on the torques are symmetric: TY" = 
20 control intervals are used. 

The controls, angular positions and velocities of the 
solution are shown in Figure 1, 2 and 3 respectively. 
The final position is reached in. tf = 0.56sec. Fig- 
ure 1 reveals that at every time instant there is at 
least one control in saturation. This is in accordance 
with the results of Chen and Desrochers [18]. As can 
be observed from Figure 1, due to the control para- 
metrization the control trajectories are quite smooth 
instead of exhibiting many switches between the up- 
per and lower bound, which may inflict damage to 
the robot. The initial guess of t,he controls and sam- 
ple time were set to utitia' = 0, IC E { 1 , 2 , .  . . ,20} 

respectively. Even though the 
initial guess is far from the optimum, the algorithm 
converged well. We set the bounds on the motion 
time At"" = 0.005sec and At"'- = 0.25sec. These 
bounds appeared to be wide enough, since the optimal 
value is At = = 0.028sec. 

and a t in i t i a l  - - Atmin 

Computation time The computation time for the 
5-DOF robot is 2lmin. Except for the algorithms in 
Dubowsky et.al. [9] and Shiller and Dubowsky [lo], 
which both rely on state parametrization, unfortu- 
nately all the papers in our reference list do not report 
computation times. For off-line computation, e.g. for 
optimal control+LQG design [13], a computation of 

Table 1: 5-DOF: Denavit-HartenLeig palameteis. 
z O L ,  [-I a , - ~ [ m l  d ,  [mI 0~ 
1 00 0 0 U ,  

2 900 0.2 0 212 

3 oo 0.27 0 UI4 

4 o0 0.23 n 4 

5 900 0.15 0 -  ULLJ 

Table 2: 5-DOF: masses, inertia and maximum torques. 
i 'In; [kg] I?,? [ m Z k g l  r p u  IniAkgj I:" [mZrcgl  
1 2  - -. 0.333 
2 1  0.0022 0.0088 0.0094 
3 0.5 0.0274 0.0297 0.0037 
4 0.3 0.0003 0.0004 0.0006 
5 0.1 0.0057 0.0057 0.0007 

21 min is no problem. The computation time is sensi- 
tive to lower and upper bounds of the sampling time. 
The computation times are 32 sec and 4 min for nar- 
row bounds on the sample time of the 2-DOF robot 
(Atmin = 0.0385, Atmu = 0.04) and 5-DOF robot 
(Atmin = 0.0275, Atmax = 0.0285) respectively. 

5 Conclusions 

We presented a new algorithm for the computation of 
bang-bang and singular solutions of the time-optimal 
control problem for >2-DOF robots with viscous fric- 
tion and gravity. The algorithm is a combination 
of a conjugate gradient method and a Gauss-Newton 
method. In the case of bang-bang solutions the algo- 
rithm computed final motion times for a 2-DOF ro- 
bot, which are only slightly longer due to the control 
parametrization. As opposed to other algorithms suit- 
able for >2DOF-robots, our algorithm does not suf- 
fer from errors introduced by state parametrization. 
Our algorithm calculated smooth controls on the par- 
tially singular 5-DOF robot inotion problem. More 
smooth control trajectories can be obtained by increas- 
ing the number of control intervals N .  The method 
is not limited to application on robots but can be ap- 
plied to other nonlinear optimal control problems with 
free final time and bounded control. In future work 
we intend to include obstacle avoidance. Within this 
method this can be achieved using penalty functions. 

Table 3: 
torques and friction coefficients. 

5-DOF: initial and final positions, maximum 

@ i " L % t i d  [deg] B f i V L n f  [deg] T?*, [NI K (z ,  z) 1-1 
1 0 90 15 0.5 
2 0 -90 10 0.5 
3 0 90 5 0 5  
4 0 0 5 0.5 

3Eshed robotec. Inc. 
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Figure 1: Controls of 5-DOF robot: axis 1: - , axis 
2: . . ., axis 3: -. axis 4: - -, axis 5: -x-. 
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Figure 2: Joint positions of motion of 5-DOF robot: 
axis 1: ~ , axis 2: . . ., axis 3: -. axis 4: - -, axis 5 :  
-X-. 
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Figure 3: Joint velocities of motion of 5-DOF robot: 
axis 1: - , axis 2: . . ., axis 3: -. axis 4: - -, axis 5: 
-X-. 
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