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Computation of time-optimal controls applied to rigid manipulators
with friction

L. G. VAN WILLIGENBURGt and R. P. H. LOOP}

We present a numerical procedure to compute non-singular, time-optimal solu-
tions for non-linear systems that are linear in the control and have fixed initial and
final states and bounded control. Part of our procedure is a new numerically
computable test that determines whether bang-bang solutions satisfy Pon-
tryagin’s minimum principle. This test reveals the new important fact that, for
non-linear systems, with linear control and dimension n, the probability that a
bang-bang solution with more than n — 1 switches satisfies Pontryagin’s Mini-
mum Principle is almost zero. Using a parameter optimization procedure we
search for bang—bang solutions with up to »n — 1 switches which transfer the
system from the initial to the final state. If no controls with up to n — 1 switches
can be found to satisfy Pontryagin’s Minimum Principle the problem is very likely
singular. We apply our procedure to the time-optimal control problem for rigid
manipulators where friction may be included in the dynamics. We will demon-
strate that some solutions mentioned in the literature to satisfy Pontryagin’s
minimum principle do not. A class of time-optimal control problems turns out to
be singular. To solve these problems we propose and demonstrate the method of
control parametrization.

1. Introduction

Necessary conditions for the solution of time-optimal control problems involv-
ing a non-linear system that is linear in the control, with fixed initial and final states
and bounded control, are very well known (Lewis 1986, Sage and White 1977,
Bryson and Ho 1975). They can be derived from what is known as Pontryagin’s
minimum principle. If the time-optimal control problem is non-singular, these
necessary conditions imply that the solution is of a bang—bang type, i.e. a solution
where the control variables have extreme values at all times, except for the switch
times where they may switch from one extreme value to the other. Note that this
does not imply that a bang—bang solution, which transfers the system from the
initial to the final state, necessarily satisfies the necessary conditions for the solution
of the non-singular time-optimal control problem, in other words Pontryagin’s
minimum principle.

The necessary conditions make up a non-linear two point boundary value
problem (TPBVP) (Lewis 1986, Sage and White 1977, Bryson and Ho 1975). This
problem is generally very difficult to solve numerically since little information
concerning the co-state involved is available while, dependent on the system
dynamics, the final state is very sensitive to changes in the co-state evolution.
Therefore, a general approach to solve these problems numerically is to make
assumptions with regard to the number of switch times, and the initial value of each
control variable. Using a parameter optimization procedure where the parameters
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are the switch times and the final time, with a penalty for deviations from the fixed
final state, one tries to find a bang-bang control which transfers the system from
the initial to the final state. Having found such a control it is assumed that it
satisfies Pontryagin’s minimum principle (Kahn and Roth 1971, Weinreb and
Bryson 1985, Wen and Desrocher 1985). In this paper we present for the first time
a numerically computable test which verifies if bang-bang solutions satisfy Pon-
tryagin’s minimum principle. Furthermore, this test reveals the previously unknown
fact that the probability for a bang—bang solution, with more than n — 1 switch
times, to satisfy Pontryagin’s minimum principle is almost zero, where # is the
dimension of the system. Therefore, in practice, the search for bang—bang solutions
can be restricted to solutions with up to n — 1 switch times.

We apply a parameter optimization procedure in conjunction with our numeri-
cal test to compute bang—bang solutions for the IBM 7535 B 04 robot which was
earlier considered by Geering et al. (1986). We may include viscous and Coulomb
friction as well as gravity in the robot dynamics, which were not considered by
Geering et al. (1986). Robotic manipulators constitute non-linear systems that are
linear in the control, the control being bounded (Van Willigenburg 1990 a). We
demonstrate that we find exactly the same bang-bang solutions as Geering et al.
(1986) when transferring the system from the initial to the final state. Although
Geering et al. (1986) state that they all satisfy Pontryagin’s minimum principle, our
numerical test reveals that some of them do not. Finally we demonstrate that a
method based on control parametrization (Goh and Teo 1988, Teo et al. 1989)
generates solutions for non-singular problems involving the IBM 7535 B 04 robot
which are very close to the optimum. The method based on control parametrization
can be applied to both singular and non-singular problems. For robotic manipula-
tors it is, in both cases, expected to generate solutions that are very close to the
optimum. The method explicitly considers the control to be piecewise constant. This
is a realistic assumption since robotic manipulators are controlled by digital
computers. Furthermore, it allows for the inclusion of bounds on the individual link
velocities, which should also be considered in practical situations (Van Willigenburg
1991).

An assembly task performed by robotic manipulators generally involves the
transportation of an object or a tool from one location to another. This operation
is called a ‘point-to-point motion’ and is characterized by prescribed initial and final
positions and velocities of the robot links. The link positions and velocities may be
considered as the state variables of the robotic manipulator. To maximize produc-
tivity the objective is to perform the ‘point-to-point motion’ in minimum time. The
problem of performing a ‘point-to-point motion’ in minimum time constitutes a
time-optimal control problem with fixed initial and final states, and is of great
importance.

For an extensive review of earlier work on the time-optimal control problem for
robotic manipulators we refer the reader to Chernousko et al. (1989) and references
cited there. We may roughly divide the work into three categories. One category
uses linear models from which the solution to the time-optimal control problem
may be computed. In this category some references approximate non-linear robot
dynamics that are linear in the control by a linear model (Kahn and Roth 1971,
Kim and Shin 1985, Wen and Desrocher 1986, Nijmeyer et al. 1988), while others
use feedback to compensate for non-linear terms (Freund 1975, Katupitiya 1986) in
order to arrive at a linear model. The latter is possible since robotic manipulators



Computation of time-optimal controls 1099

constitute so-called feedback linearizable systems. The disadvantage of this is that
due to the feedback the bounds on the control variables become state-dependent
and have to be approximated by constants.

A second category (Sahar and Hollerbach 1985, Rajan 1985, Shiller and
Dubowsky 1989) uses the solution of the time-optimal control problem along a
prescribed path (Bobrow, et al. 1985, Shin and McKay 1985, Van Willigenburg
1991). Using some optimization techniques a path that connects the initial and final
states is sought, which possesses the smallest minimum travelling time. A disadvan-
tage of this method is that an assumption has to be made concerning the shape of
the path, while the solution to the problem turns out to be very sensitive to this
path shape.

The third category, like the second, considers the ‘true’ non-linear dynamics but,
except for Van Willigenburg (1990 a), neglects friction (Ailon and Langholtz 1985,
Sontag and Sussmann 1985, 1986, Wen 1986, Geering et al. 1986, Chen 1989). In
this category no assumptions concerning the solution have to be made. Pontryagin’s
minimum principle, which states necessary conditions for a time-optimal control, is
used to investigate the time-optimal control problem. However, except for Geering
et al. (1986), no procedures to compute time-optimal solutions have been presented
within this category. The publications only state results concerning the form of the
solution. Sontag and Sussmann (1985, 1986) demonstrate that the problem may be
singular. As we demonstrate in this paper, some solutions presented by Geering et
al. (1986) are not time-optimal, i.e. they do not satisfy Pontryagin’s minimum
principle.

2. Dynamics of rigid manipulators with friction
The dynamics of a rigid N-link manipulator with friction can be written as
(Asada and Slotine 1986)

T =M@ + V0, 0) + F(0, 0) (1a)
where

0=, 0, .. 0y)7 (15)
is an N x 1 vector containing the joint angles of the links and

t=(1, T, .. T5)7 (1¢)

is an N x 1 vector containing the actuation torques, which are considered to be the
control variables. M(0) is an N x 1 positive-definite inertia matrix, V(6, 6) is an
N x 1 vector representing centrifugal and Coriolis forces, G(0) is an N x 1 vector of
forces due to gravity and F(@, ) is an N x 1 vector of friction forces.

To investigate the time-optimal control problem, we write the non-linear system
(1) in state-space form, the state and control vector being (6T 6T)T and T,
respectively. Since M(6) is positive definite we obtain from (1)

0= M- (O — V0, 0) — GO) — F(8, 0)] (2)

Introducing
x, =0 (3a)
X, =40 (3b)
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x=[xl] 3o
X2

u=rt 34d)
T=V+G+F 3e)
(2) can be written in state-spacé form using (3)
X=X (4a)
Xo=—M7'(x)T(x) + M~'(x,)u (4 b)

Observe that the dynamics given in (4) are linear in the control. In the following,
the index i refers to the /ith component if it is associated with a row or column
vector and to the ith column in the case of matrices.

Each component of the control vector u is assumed to be bounded.

wl<by i=1,.N 5)

If, for instance, the manipulator is actuated by current controlled DC-motors, the
torque is proportional to the motor current, which is limited in the case of
DC-motors.

3. Time-optimal control problem
Consider a non-linear time-optimal control problem that is linear in the control.
Given the system

X =f(x) + B(x)u (6a)
where x € R", u € R’, r < n, with fixed initial state
x(ty) = X, (6b)
and bounded control
lu;|<a, i=1,..r (7

It is possible to minimize the cost criterion
l,‘

J(to) =J (1) dt (8)
to

subject to the final state constraint

where x, is fixed and ¢, is free.
The hamiltonian for system (6 @) and the cost criterion (8) is given by

H(x,u, 2y =1+ AT[f(x) + B(x)u] (10)

where / is the co-state of the system (6 a). The co-state variables satisfy the adjoint

differential equation

. OH

i=
ox

Pontryagin’s minimum principle states that a necessary condition for an optimal

(1)
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control is that is minimizes the hamiltonian for optimal values of the state and
co-state, i.e. (Lewis 1986)

H(x*, u*, A*) < H(x*, u, .*) for all admissible u (12)

where the superscript * denotes an optimal quantity. Since (10) is linear in the
control, we obtain from (7), (10) and (12) the following control law

v _ T 0B <0
=N e TR, > 0,

where, for obvious reasons, [AT(f)B];, t, <t <1, is called the switching function
corresponding to the control variable u,(f). If one or several of the switching
functions are equal to zero over some time interval the control law (13) does not
determine a solution. The time optimal control problem is called singular in this
case. If the switching functions equal zero at isolated times only, (13) determines a
solution and the problem is called non-singular. For the moment, we only consider
non-singular time optimal control problems. In the case of a non-singular time
optimal control problem we observe from (13) that almost everywhere each control
variable takes on an extreme value. This type of control is called bang-bang
control.

The solution of the time-optimal control problem (6)-(9) is determined by (6),
(9), (11) and (13) and constitutes a two point boundary value problem (TPBVP)
where the boundary conditions are given by (6 ) and (9) and, in addition, we have
the boundary condition (Lewis 1986)

H(t,) =0 (14)

<1<t (13)

Since the system (6 a) and the integrand of the cost criterion (8) do not explicitly
depend on time, the hamiltonian (10) is not an explicit function of time. So we have
(Lewis 1986)

H=0 (15)
and together with (14)
H(H =0 <1<y, (16)

The TPBVP (6), (9), (11), (13) and (14), is very difficult to solve numerically since,
except (16), no information concerning the values of the co-state is available. In
addition, we have found that the solution is very sensitive to changes in the co-state.
The usual approach is to search for bang—bang controls which transfer the system
from the initial to the final state and to assume that the one with the smallest
transition time satisfies Pontryagin’s minimum principle. We demonstrate that this
assumption may not be correct. In § 4 we present a numerical test to verify whether
bang-bang solutions satisfy Pontryagin’s minimum principle.

As an introduction to § 4 let us finally look at the time optimal control problem
from a different point of view. Given an initial co-state

Mty) = 4o (17)
which according to (16) must satisfy

H(ty) =0 (18)
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the system (6 a), the adjoint system (11) and the control law (13), when integrated
from the initial conditions (6 b) and (17), generate time optimal solutions satisfying
Pontryagin’s minimum principle. The final state in this case depends on the initial
co-state (17) and the time at which the integration is stopped. So, given a fixed final
state (9) the time optimal control problem may be regarded as an initial value
problem for the co-state. Again however, this initial value problem is very difficult
to solve numerically since, except for (18), we have no information concerning the
initial co-state and, in addition, we have found the problem to be very sensitive to
changes in the initial co-state. Since, furthermore, the final time is unknown, during
integration we constantly have to check whether we come across the fixed final
state. In § 4, however, we demonstrate that given a bang—-bang control we may
compute whether or not an initial co-state exists which generates this bang-bang
control. If it exists the solution satisfies Pontryagin’s minimum principle, otherwise
it does not. When the initial co-state exists we are able to compute it and thereby
compute the evolution of the co-state and the switching functions corresponding to
the time optimal control and state trajectory.

4. Numerical test to verify whether bang—bang solutions satisfy Pontryagin’s
minimum principle
The state and co-state equations for the time-optimal control problems are given
by (6 a) and (11). Pontryagin’s minimum principle states that a necessary condition
for a time-optimal solution is

u (1) = —a; sgn[AT(NB], 1<t < l (19)

In the following, a time-optimal solution will denote a solution satisfying Pon-
tryagin’s minimum principle, i.e. (19). Assume we have a bang—bang control

u, (1) o<t <t (20)
- which transfers the system from the initial to the final state, i.e.

xp(ty) = X, (21 a)
Xty )= x, (21 4)

where x, is the state trajectory of the system (6 a) generated by the control (20).
The question of whether this control is time-optimal comes down to the question of
whether an initial co-state vector A(f,), satisfying (18), exists which by (6 ), (11)
and (19) generates the bang-bang control. Equation (19) demands that at each
switching instant the corresponding switching function is equal to zero. We
demonstrate that this condition can be transformed into p computable linear
relationships between the n components of the initial co-state vector, where p is the
number of switches.
The solution to the linear adjoint differential equation (11) is given by

A1) = D(1, to)Alty) (22)

where @ is the fundamental matrix associated with (11). Note that since both x,
and u, are known ®(z, t,) can be computed. If the ith control variable switches from
one extreme value to the other at time ¢, the corresponding switching function
must be equal to zero. So we must have

[AT(t)B(1,)], =0 (23)
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From (22) and (23) we must therefore have
ATt E (2,) =0 (24 a)
where
(1) =D, 1,)B.(1y) (24 b)

Equations (24 a and b) constitute a linear relationship between the » components of
the initial co-state vector. With p switching times we obtain p linear relationships
between the components of the initial co-state vector. According to (10) and (18),
the initial co-state must also satisfy

AT(1)] f(x0) + B(xo)u(to)] = —1 (25)

Equations (24 a) and (24 b) (which hold at each switching instant) and (25) define
a non-homogeneous system of p + 1 linear equations with » unknowns. When
p + 1 =n, the system has a unique solution if these p + 1 equations are linearly
independent. If p 4+ 1>n, then at least p + 1 —n equations must be linearly
dependent for the system to have a solution, otherwise the system has no solution.
If p + 1 <n, a set of solutions exists.

The non-homogeneous system of p + 1 equations constitutes the necessary
conditions for the initial co-state. If the system has no solution, the bang-bang
control is not time-optimal. If the system has one or several solutions, we have to
check if (19) is satisfied for all t e[t,,1,]. This can be done by numerical
integration of (6 @), (11) and (19), given x(¢,) and A(#,).

5. Time-optimal control problem for a two-link robotic manipulator
5.1. Introduction

In order to demonstrate our approach we investigate the industrial IBM 7535 B
04 robot, treated by Geering et al. (1986). This is one of few papers in which actual
numerical calculation of the time-optimal controls is performed. Since Geering et al.
also use Pontryagin’s minimum principle to investigate the time-optimal control
problem, this paper serves as a reference for our approach. We show that some
solutions that were presented in that paper as time-optimal, are not.

5.2. Dynamic model of the IBM 7535 B 04 robot

The industrial IBM 7535 B 04 robot is schematically shown in Fig. 1. This robot
consists of two links, which move in a horizontal plane. A third link which allows
for vertical translations is mounted at the end of the second link. To perform
various tasks a gripper, which may hold a load during operations, is mounted at the
end of the third link. The vertical motion is completely decoupled from the
horizontal motion of the first two links and is not treated here. The dynamics of
this robotic manipulator as presented by Geering et al. (1986) are quite inaccessible
and do not allow for easy extensions to inclide gravity and friction terms. As we
demonstrate in Appendix A, this robot can be fully described by the closed-form
dynamics of a two-link robotic manipulator (Asada and Slotine 1986). The third
link, the gripper and the load are then considered as integral parts of the second
link. The numerical values for the parameters of the IBM 7535 B 04 robot given by
Geering et al. (1986) can still be used after appropriate transformation. We now
present the closed form dynamics of the two-link robotic manipulator and give the
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Figure 1. Geometry of the IBM 7535 B 04 robot.

actual values of the parameters. For a detailed description of the matching of the
closed form dynamics with the model and the data presented by Geering ef al.
(1986) refer to Appendix A.

Consider a common two-link robotic manipulator that suffers from viscous and
Coulomb friction. This is a robot with a geometry as shown in Fig. 1 without a
third link. The robot motion may be considered either in a horizontal or in a
vertical plane. Let m, and /, be the mass and the length of the first link and m, and
I, the mass and length of the second link. The moments of inertia about the
centroids are given by I, and I,. The angular rotation 6, of the second link is
measured relative to the first link. The distances between the centroids of links and
the joint axes are denoted by /-, adn /.

The closed form dynamics are given by (Asada and Slotine 1986)

1, =M, 0, + M0, — h63 —2h0,0, + G, + F, (26 a)
1, =M, 0, + My,0, — h83 + G, + F, (26 b)
where

M, =m 12, + I, + my[I3 + 1%, + 2], I, cos (0,)] + I, (27 a)
M, =myl 1, cos (0,) + mylE, + I, (27 b)
My, =mylé, + 1, (27 ¢)
h=m,l, I, sin (0,) (27d)
G, =m,lc,g cos (0,) + myg{lc, cos (0, + 6,) + 1, cos (6,)} (27 e)
G, =mylc,g cos (6, + 0,) (271)
F, =c, sgn (6,) +v,0, 27g)
F, = ¢, sgn (6,) + v,0, (27 h)

The terms G, and G, account for the effect of gravity, while the terms F, and F,
which are not considered by Asada and Slotine (1986) represent both Coulomb and
viscous friction.

If we consider the robot to move in a horizontal plane, we must exclude gravity
terms, because this force is orthogonal to the robot motion. If we consider the
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robot motion in a vertical plane, the gravity terms (27 €) and (27 ) play a major
role in dynamics.

The values of the parameters of the IBM 7535 B 04 robot, computed from the
parameter values presented by Geering et al. (1986) are given below.

[=04m [L=025m I[=0161m

m,=21kg I,+ml% =16m*kg I,=0273m’kg

¢,=005Nm v =0025Nms"' ¢=015Nm v,=0005Nms"'
by=25Nm b,=9Nm (28)

For the computation of these parameter values, refer to Appendix A.

5.3. Time-optimal solutions

The hamiltonian (10) is affine in the controls ;. Pontryagin’s minimum princi-
ple then yields that the controls are of bang—bang type or may be singular. In the
case where we have a bang—bang control that transfers the manipulator from the
initial state to the final state, we are able to check whether or not this bang—bang
solution satisfies Pontryagin’s minimum principle. In order to find such a bang-
bang control, we assume an initial control vector and we assume that the number
of switching times equals p. Then we use a parameter optimization method to
optimize the p switching times and the final time, using a penalty for deviations
from the final state to force the final state to be reached.

Geering et al. (1986) treat several types of solutions for the special case in which
the links are stretched in both the initial and final configurations. We find exactly
the same bang—bang solutions as Geering et al. (1986) proving that we are
concerning ourselves with exactly the same robot dynamics. To demonstrate this,
we give our computations of some of the robot motions presented by Geering et al.
(1986). Furthermore, we check whether or not the computed solutions satisfy
Pontryagin’s minimum principle. Some solutions presented by Geering et al. (1986)
as time-optimal turn out not to be.

In § 4 we noted that for a bang—bang solution, with p switching times, to satisfy
Pontryagin’s minimum principle we have to consider a non-homogeneous system of
p + 1 linear equations with n unknowns. Therefore, it seems natural to look at first
for a bang-bang solution with n — 1 switching times, for then we have to solve a
system of » linear equations with n unknowns; n being 4 in the case of a two-link
manipulator. Geering et al. (1986) also found time-optimal solutions with three
switching times, designated as type A,.

The actuation torque u, of the second link acts on the first link too. If the sign
of u, is the opposite of the sign of u, at the beginning of the robot motion, u,
increases the accelerating effect of u,. It seems natural for the initial control vector
to have the first component positive and the second component negative. However,
we try other initial control vectors as well.

For a robot motion with initial state

Xo=[0 0 0 0]7 (29 a)
and final state

x,=[0975 0 0 0 (29 b)
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assuming three switch times, parameter optimization, performed by the routine
BCPOL from the IMSL library, yields the bang—bang control shown in Fig. 2,
which transfers the system from the initial to the final state as shown in Fig. 3. Now
we have to check whether this bang—bang control satisfies Pontryagin’s minimum
principle. This is done by calculating an initial co-state following the method given
in § 4. Then we numerically integrate the system (6 a), (11) and (19), given x(z,) and
Aty) from the initial time to the final time to check whether (19) is satisfied for all
telty, t]

For the robot motion (29) the bang—bang solution satisfies Pontryagin’s mini-
mum principle, as can be seen from Fig. 3. In this figure both the optimized
bang—bang control and the bang—bang control generated by the switching func-
tions are sketched: they are identical in this case.

30

u1({bb)=ut(lambda)
201 4

N

Control [Nm] ; Values sw.funct. » 226.9

o=l
|
wl
~ior u2(bb)=u2(lambda) 1
=20t B
-30 " " "
0.2 0.4 0.6 0.8 1 1.2
Time [a]

Figure 2. Time-optimal control for the robot motion in Fig. 2; u, switches at 0-5423 s, u,
' switches at 0-088 s and 0-588 s and the final time ¢, = 1:085 5. The bang-bang control
and the control generated by the switching functions match. The switching functions
are scaled as indicated.

o

-1

State [rad, rad/s)

~2

-3

-4

-5 . N
o 0.2 0.4 0.6 0.8 1 1.2

Time [a]

Figure 3. Time-optimal state trajectory for a robot motion with stretched initial and final
configuration; 6,(z,) = 0-975 rad, 0,(¢,) =0 rad.



Computation of time-optimal controls 1107

Next we present, in Fig. 4, our results for robot motion with initial state
X=[0 0 0 0T (30 a)

and final state
x=[1'5 0 0 0]" (30 b)

the control again having three switches. Obviously the computed control and the
control generated by the switching function do not match, so this control is not
time optimal. The initial co-state, which constitutes the unique solution to the
necessary conditions (24) and (25) does not yield the desired bang—bang control.

For 6,(1,) >0-98, bang—bang controls with three switches do not satisfy
Pontryagin’s minimum principle. Next we assume four switching times in order to
try and find time-optimal controls which transfer the robot to a configuration with
0,(1,) > 0-98. Geering et al. (1986) found this type of solution and denoted it as
type 4,. We now demonstrate that this bang—bang control with two switches for
each torque does not satisfy Pontryagin’s minimum principle, i.e. these solutions are
not time-optimal!

The results for a robot motion with the control switching four times given the
initial state

xo=[0 0 0 0]" (31 a)

and the final state
x=[10 0 0 01" (31 b)

are shown in Fig. 5. An initial co-state is calculated from the first three switching
times, which determine a unique solution for the initial co-state. Integrating the
system yields that the calculated bang—bang solution does not satisfy Pontryagin’s
minimum principle, as can be seen from Fig. 5(b).

5
<
h-J
E AT L1J
g © J
E x2
«Q
E -5t x4 4
) 0.2 0.4 0.6 0.8 1 1.2 1.4
Time [s]
(a)
. 2oF uT(lambda J
; u2(bb),u2(lambda) w2
Al e
S
P | o, -
3 -20} w1 u1(bb) .
) 0.2 0.4 0.6 0.8 1 1.2 1.4
Time [s]
(b)

Figure 4. (a) State trajectory for a robot motion with stretched initial and final configuration;
0,(1,) = 1:5rad, 6,(t,) =0rad and ¢, = 128 s; (b) the bang—bang control with three
switches and the control generated by the switching functions do not match. The first
switching function is scaled by 140-8 and the second switching function by 802-6.
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5 T T T T T
Q
H - - T
.0 — > J
E
x2
é -3r x4 1
] 0:2 0:4 0.6 0.8 1 1.2
Time [e]
(a)
— 20f =g 4
£ _u2(db)uz(lombda) | __ e
—_ 0 4
; s
3 -20 wi u1(lambda) ut(bb) |
o] 0:2 0:4 0.8 0.8 1 1.2
Time [s]
(b)

Figure 5. (a) State trajectory for a robot motion with stretched initial and final configura-
tion; 6,(1,) = 1-0rad, 6,(t,) =0rad and t,=1-09 s; (b) the bang-bang control with
four switches and the control generated by the switching functions do not match. The
first switching function is scaled by 225-3 and the second switching function by 675-9.

Next we compute a time-optimal bang—bang control with four switching times.
In §3 we noted that in this case there must be a linear dependency in the
non-homogeneous system which determines the initial co-state. We consider a
solution with the second link swinging through, u, switching three times and u,
once. Geering et al. (1986) denoted this type of solution as B,. The results are
depicted in Fig. 6, for the robot motion from the initial state

x=[0 0 0 0] (32a)
to the final state
x,=[076 —2n 0 0O]F (32b)

State  [rad, rod/s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

Figure 6. Time-optimal state trajectory for a robot motion with stretched initial and final
configuration, the second link swinging through; 6,(¢,) = 0-76 rad, 6,(t,) = — 2= rad
and 1,=0975s.
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As can be seen from Fig. 7, although the solution has more than n — 1 switching
times, the computed bang—bang control with four switching times satisfies Pon-
tryagin’s minimum principle! In general the probability that a solution with more
than n — 1 switching times satisfies Pontryagin’s minimum principle is almost zero,
since the probability of the necessary conditions (24) and (25), for the initial
co-state, being linearly dependent is almost zero. Therefore, there must be an
explanation of why we find a complete class of time-optimal control problems of
type B, having time-optimal solutions with »n switching times. This can be explained
by the symmetry of the switching functions, which causes linear dependence in the
necessary conditions (24) and (25) for the initial co-state. The symmetry of the
switching functions for time-optimal control problems of type B, is explicitly
contained in the robot dynamics. For a detailed analysis refer to Appendix B.

Once, however, we introduce friction into the robot dynamics, this symmetry
immediately vanishes. We show this by evaluating the same type B, robot motion
as above, only now with the addition of small Coulomb and viscous friction terms
as described in equations (27 g) and (27 4), with parameter values given by equation
(28). The results are presented in Fig. 8. In this case the switching functions are
only nearly symmetric. The symmetry, which causes the linear dependence in
conditions (24) and (25) for the initial co-state, is therefore lost and the solution
does not satisfy Pontryagin’s minimum principle. Also, if we consider the robot
motion in a vertical plane the influence of gravity destroys the symmetry. We wish
to make the point here that the solutions of type B,, when friction and gravity are
disregarded, constitute a very special class of time-optimal control problems for
which a solution with more than n — 1 switches satisfies Pontryagin’s minimum
principle. In other words, if we consider an arbitrary initial and final state, then the
probability that the time-optimal control consists of a bang—bang control with
more than n — 1 switches is almost zero.

Therefore, to solve the time-optimal control problem for a given initial and final
state, we search for a bang—bang control with no more than n — 1 switches which

30

20f B

w2 u2(bb)=u2(lambda)

-~20 g
u1(bb)=u1(lombda)

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Control [Nm] ; Values sw.funct. ¢ 276.2

Time [s]

Figure 7. Time-optimal control for the robot motion in Fig. 6; u, switches at 0-191s,
0-4873s and 0-784s; u, switches at 0-4873 s and the final time ¢, =0975s. The
bang-bang control with four switches and the control generated by the switching
functions match. The switching functions are scaled as indicated.
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Figure 8. (a) State trajectory for a robot motion with stretched initial and final configura-
tion with friction, the second link swinging through; 0,(z,) =0-76 rad, 0,(¢,) = —
2n rad and 1, = 0-976 s; (b) the bang—bang control with four switches and the control
generated by the switching functions do not match. The first switching function is
scaled by 271-6 and the second switching function by 1765-4.

satisfies Pontryagin’s minimum principle. If such a bang—bang control cannot be
found, the time-optimal control problem is very likely singular.

The procedure described above can be applied to robot motions in vertical
planes as well. Although we computed several, we do not actually include examples
in which gravity is contained.

6. Sub-time-optimal solutions computed by control parametrization

From § 5 we observe that the time-optimal control problem is non-singular only
for a limited class of initial and final states. For singular problems, Pontryagin’s
minimum principle does not yield an optimal control. In this section we demon-
strate that the method of control parametrization can be used to compute sub-
optimal controls. The control parametrization will be based on the assumption that
the control is of a piecewise constant nature, which is a realistic assumption when
using a digital controller. We show that for a non-singular time-optimal control
problem, solutions computed by means of control parametrization transfer the
manipulator in near minimum time from the initial to the final state. Since, for
singular time-optimal control problems, the optimum is very flat, solutions found
by control parametrization are expected to be near time-optimal as well.

Consider the system (6) and the cost function (8). The control parametrization
is given by

w(t) =u;(t), t €ltstany)s i=1,ur, k=0,1,. N (33)

where, although not necessary, we assume f, are equidistant time instants and
ty.1 =t The controls are assumed to be bounded

()| <4, i=1,...r, k=0,1,N (34)
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The control parametrization (33) and (34) constitutes a bounded piecewise constant
control. The time-optimal control problem now is to find a control u(?) satisfying (33)
and (34) which transfers the manipulator from the initial to the final state, such that
the cost functional (8) is minimized. As can be observed from (33) the control
variable u; is a function of (N + 1) parameters, the parameters being the amplitudes
of the control variable J. By a parameter optimization method, i.e. the routine
BCPOL from the IMSL library, the amplitudes are varied in order to find a control
which drives the system from the initial to the final state, using a penalty for
deviations from the final state in order to force the final state to be reached. A final
time is assumed, and when a solution is found the final time is decreased; otherwise
it is increased and the process is repeated until changes in the final time become
insignificant.

For non-singular time-optimal control problems we are able to compute time-
optimal solutions. Therefore the minimum transition time is known. We demon-
strate that the method of control parameterization yields near time-optimal controls
which differ significantly from the time-optimal bang—-bang controls, demonstrating
that the cost functional has a weak minimum.

For the robot motion with initial and final states given by (29), we have
computed a time-optimal solution with a minimum transition time of 1-085s, as
shown in Figs 2 and 3. We have applied control parametrization using 20
equidistant time-intervals. We find a piecewise constant control which transfers the
robot from the initial to the final state in 1-095 s, as shown in Figs 9 and 10.

Next, we applied control parametrization to the singular problem presented in
Fig. 4, i.e. robot motion with initial and final states given by (30). The results are
depicted in Figs 11 and 12. We observe that the final time found by control
parametrization is equal to 1-225s. Previously we had obtained a bang—bang
solution with three switches and a final time of 1-28 s which we proved was not time
optimal. Based on type A, of Geering et al. (1986), a solution type we proved is not
time-optimal either, we computed a bang—bang control with four switches yielding
a final time of 1-235s. Control parametrization obviously gives the smallest
transition time for this problem.

Summarizing the method of control parametrization seems to be well suited to
solve both non-singular and singular problems.

State  [rad, rad/s]

Time [s]

Figure 9. State trajectory for a robot motion with stretched initial and final configuration;
0,(t;) =0-975 rad, 0,(¢,) = 0rad.
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u2

Parametrized Control  [Nm]
)

0.2 0.4 0.6 0.8 1 1.2

Figure 10. Parametrized control for the robot motion in Fig. 9; the number of time
intervals is 20 and the final time 7, = 1-095s.

Stote  [rad, rad/a]

o 0.2 0.4 0.8 0.8 1 1.2 1.4
Time [a]

Figure 11. State trajectory for robot motion with stretched initial and final configuration;
0,(t,) = 1-5rad, 6,(¢,) =0rad.

30
ut B
20 o
£
- 10 4
8 o
3
3 I o R ]
:
-20F 4
-30 n " N
[*] 0.2 0.4 0.6 0.8 1 1.2 1.4
Time [s]

Figure 12. Parametrized control for the robot motion in Fig. 11; the number of time
intervals is 20 and the final time t,=1225s.
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7. Conclusions

For non-linear systems, with linear control, we have presented a new, numeri-
cally computable test which determines whether bang—bang solutions are time-op-
timal, i.e. satisfy Pontryagin’s minimum principle. The test reveals the new
important fact that if we consider such a system with dimension », the probability
that a certain bang—bang solution ‘with more than n — 1 switches’ satisfies Pon-
tryagin’s minimum principle is almost zero. Given arbitrary initial and final states
we therefore search for bang—bang solutions with up to n —1 switches, which
transfer the system from the initial to the final state. The search constitutes a
parameter optimization procedure in which the parameters are the switch times
and the final time. A penalty for deviations from the final state is used to force
the final state to be reached. The numerical test is applied to verify whether or not
these solutions satisfy Pontryagin’s minimum principle. If no solutions with up to
n — 1 switches can be found transferring the system from the initial to the final
state while satisfying Pontryagin’s minimum principle, the problem is very likely
singular.

Our method can be applied to rigid robotic manipulators, where both friction
and the effect of gravity may be included in the robot dynamics. We computed
time-optimal solutions for an IBM 7535 B 04 robot, which can be modelled as a
two-link manipulator. We demonstrated that for this robot some numerical solu-
tions mentioned in the literature to satisfy Pontryagin’s minimum principle do
not. Furthermore, we demonstrated that for non-singular problems a method
based on control parametrization generates sub-optimal solutions that are very
close to the optimum for this robot. Since for singular problems the minimum is
very flat, in these cases we also expect the method based on control parametriza-
tion to generate sub-optimal solutions that are very close to the optimum. Sum-
marizing—the method of control parametrization seems to be very well suited to
solve general time-optimal control problems for rigid manipulators. The method
explicitly assumes the control to be piecewise constant, which is a realistic as-
sumption, since robots are controlled by digital computers. Bounds on the indi-
vidual link velocities, which have to be considered in practice as well, are also
easily included in the problem. The solutions are in open-loop form but, when
conservative bounds on the control variables are used, the solutions can be
implemented in conjunction with a perturbation controller, the result yielding a
time-optimal feedback controller (Van Willigenburg 1990 b).

We did not treat all the details involved in the computation of the numerical test
to verify whether bang—bang solutions satisfy Pontryagin’s minimum principle. In
a future paper we plan to treat the numerical computation of the test in detail,
together with the influence of numerical errors. For instance, the numerical determi-
nation of whether or not a non-homogeneous set of equations is linearly dependent
presents a problem. Furthermore, the errors introduced by numerical integration,
which plays a crucial role in the computation of the numerical test, have to be
considered. Questions concerning numerical errors are related to questions concern-
ing the sub-optimality of solutions. Questions concerning sub-optimality are inter-
esting since they may answer the question of to what extend solutions generated by
control parametrization are optimal. Furthermore, they are of interest since, in
practice the application of bang—bang controls increases wear. One generally
prefers a more smooth control. The question concerning the sub-optimality of
solutions will also be a subject of future research.
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Appendix A

We can easily include the effects of the third link, the gripper and the load in the
closed form dynamics of the two-link manipulator by integrating the third link, the
gripper and the load in the second link. Since the third link moves perpendicular to
the second link the centroid of the third link, the gripper and the load may be
located at the end of the second link. Assume the third link, the gripper and the
load have a total mass m; and a moment of inertia I;. The second link as a whole
will have a mass m5, a centroid /¢, and a moment of inertia I, which can all be
calculated from the masses and moments of inertia of the second and third links
together with the gripper and the load by the application of Steiner’s translation
theorem.

Application of Steiner’s theorem yields

mh = m, + n, (Al)
AL (A2)
my + My
m
D=L+ L+ -2 (1, — )2 (A3)
m2+m3

Equations (26) and (27) still hold in the case of a third link with a gripper and a
load at the end of the second link, but must be transformed by setting m, = m5,
lea=1land I, =15.

Geering et al. (1986) use the moment of inertia ¢ with respect to the joint axes,
while 7 in our equations denotes the moment of inertia about the centroid of the
link. These descriptions can be related using Steiner’s theorem. For example, we
have for the first link

51=I|+m1[é| (Ad)

As can be seen in (26) and (27), the parameter m, does not occur in the closed-form
dynamics when we consider the robot motion in a horizontal plane and we use
(A 4). If, however, we consider the robot motion in a vertical plane, m, should be
known since it occurs in the gravity term.

Geering et al. (1986) located the centre of gravity of the second link in the
middle of the second link, so

[cz. = %([2) (A 5)

The above yields the following numerical values for the IBM 7535 B 04 robot
in terms of the closed-form dynamics of a two-link robot.

,=04m  L=025m Iy =0-161 m

mh=21kg & =1-6m>kg I5=0-273 m?* kg (A6)
¢;=005Nm v, =0025Nms"' ¢=015Nm v,=0005Nms"’
by=25Nm b,=9Nm

Friction will play only a minor role in the dynamics, as can be seen from the values
in (A 6). In modern robots, in which significant gearing is typical, friction forces
can be actually quite large, up to 25% of the torque required to move the
manipulator (Craig 1986).
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Appendix B

In this appendix we demonstrate that the symmetry and anti-symmetry in Figs
6 and 7 are explicitly contained in the robot dynamics for the robot motion of type
B,, where gravity and friction terms are not taken into account.

From the closed form dynamics (26) we observe

0, =£,(0,,6,,0,,7) (B1)
0, = £>(0,,0,,0,, 1) (B2)
By inspection of the closed form dynamics we have
fil=n+0,,0,,0,,71)= —fi(—n—06,,0,,0,, —7) (B 3)
(= +0,,6,,0,,1) = —fo( =1 —0,,0,,0,, —1) (B4)

Starting at a configuration where 6,= —mn, (B1)-(B4) imply that the future
behaviour of 8, and 0, equal the past behaviour, if the controls have opposite signs.
This explains the symmetry of 6, and 6, and the anti-symmetry of 6, and 6, in Figs
6 and 7.

From the co-state equation (11), using (B 1) and (B 2), we obtain the following
equations for the co-state.

i=0
.o . Ofy
i =2 22
2= 50, 50,
.. oy, 0 ; (B5)
—Jy=4 +6—0‘1A3+6—£,14
. . 0 of> ,
"A4:/L2+&£lzl3+5—922/m/
The symmetry of 6, and 0, and the anti-symmetry of f;, f, and 6, with respect to
0, = —n imply the symmetry of 4, and 4, and the anti-symmetry of 4; and 4,,
assuming A; and 4, are equal to zero when 0, = —n. When 6, = —n both control

variables switch, which implies that both switching functions must be equal to zero.
Given (4), (10) and (13) this implies that

[Ay ZM~'=0 (B6)

Since M ~! is a positive definite matrix this implies that both 4; =0 and 4, = 0 when
0,= —m.
Finally from the closed form dynamics (26) we observe that

M(—7+0,) = M(—1 — 0,) (B7)

So M is symmetric with respect to 6,= —n and therefore M ' is also. The
symmetry of M ! and the anti-symmetry of A; and A, imply that the switching
functions are anti-symmetric. Given this anti-symmetry, a switching point on one
side of 0, = —n automatically implies a switching point on the other side.
Summarizing— the linear dependency of the non-homogeneous system of p + 1
equations for the initial co-state is explicitly contained in the robot dynamics.
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