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The equivalent representation in the delta domain of the digital optimal compensation problem is provided and
computed in this article. This problem concerns finding digital optimal full and reduced-order output feedback
controllers for linear time-varying and time-invariant systems with white stochastic parameters. It can
subsequently be solved in the delta domain using the strengthened optimal projection equations that we recently
formulated in this domain as well. If the sampling rate becomes high, stating and solving the problem in the delta
domain becomes necessary because the conventional discrete-time problem formulation and solution become ill-
conditioned. In this article, by means of several numerical examples and compensator implementations, we
demonstrate this phenomenon. To compute and quantify the improved performance when the sampling rate
becomes high, a new delta-domain algorithm is developed. This algorithm computes the performance of arbitrary
digital compensators for linear systems with white stochastic parameters. The principle application concerns
nonconservative robust digital perturbation feedback control of nonlinear systems with high sampling rates.

Keywords: optimal output feedback; perturbation feedback; delta operator; multiplicative white noise; digital
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1. Introduction

Digital perturbation feedback control of nonlinear
systems is generally performed by optimal controllers
designed using quadratic criteria and linearised dynam-
ics around the possibly optimal trajectory to be tracked
by the nonlinear system (Athans 1971). To introduce
robustness into the perturbation feedback controller
design, white stochastic parameters may be employed in
specifying the time-varying linearised dynamics about
the trajectory (Bernstein and Greeley 1986; Bernstein
and Hollot 1989; Banning and de Koning 1995;
Hounkpevi and Yaz 2007). Doing so, a digital optimal
compensation problem of the type considered in van
Willigenburg and de Koning (2000) is obtained. This
problem explicitly considers the inter-sample behaviour
of the system, and the digital nature of the controller.
This is called ‘direct digital design’ (Dullerud 1996) or
‘design of sampled-data control systems’ (Bernstein
and Hollot 1989).

To solve the digital optimal compensation problem,
a transformation to discrete-time must be performed
first (van Willigenburg and de Koning 2000).
Subsequently, the problem can be solved in discrete-
time (de Koning and van Willigenburg 1998). This is
represented by the horizontal level A in Figure 1.
As the sampling rate becomes high, the transformation

as well as the resulting equivalent discrete-time com-
pensation problem become ill-conditioned leading to
inaccurate compensators and associated decreased
performance. As explained in Middleton and
Goodwin (1990), Li and Gevers (1993) and Yuza,
Goodwin, Feuer, and de Dona (2005), the
ill-conditioning is overcome if the design is performed
using the delta operator instead of the discrete-time
shift operator. Recently, for time-varying linear system
with white stochastic parameters, we reformulated
discrete-time full and reduced-order compensator
algorithms using the delta operator (van Willigenburg
and de Koning 2010). In this article, we present the
associated transformation to the delta domain of the
digital compensation problem. Together these make up
horizontal level B in Figure 1. This level enables
nonconservative robust digital perturbation output
feedback design for nonlinear systems using high
sampling rates.

Apart from perturbation feedback control of non-
linear systems, linear systems with white stochastic

parameters may appear naturally due to randomness

of plant parameters (Wagenaar and de Koning 1988)

or due to stochastic sampling (Immer, Yükselb, and

Basar 2006; Sinopoli, Schenato, Franceschetti, Poolla,

and Sastry 2008).
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The transformation of digital optimal control prob-
lemswith quadratic criteria into equivalent discrete-time
problems has been specified for time-varying linear
systems with deterministic parameters (van
Willigenburg and de Koning 1992) and white stochastic
parameters (van Willigenburg and de Koning 2000).
Only if the linear system is time invariant and has
deterministic parameters, transformation to equivalent
problems in the delta domain is a standard exercise
(Middleton and Goodwin 1990). This article presents
this transformation for the general case of time-varying
linear systems with white stochastic parameters.

The computational procedure proposed in this
article can be briefly described as follows. As long as
the sampling period is not very small, transformation
into an equivalent discrete-time problem followed by a
transformation to the delta domain is adopted. This is
represented by arrows 1 and 2 in Figure 1. For linear
time-varying systems with white stochastic parameters,
the latter of these two transformations is unpublished.
The transformation into an equivalent discrete-time
problem is presented in Section 2. The one from
discrete-time to the delta domain is presented

in Section 3. As the sampling period becomes small,
part of the equivalent discrete-time problem computa-
tion becomes ill-conditioned. Then, this part of the
transformation must be performed avoiding the
discrete-time domain as indicated by arrow 3 in
Figure 1. As the sampling period becomes small, a
constant approximation of the system dynamics over
each sampling interval may be adopted. This enables
and justifies the use of an algorithm that formally only
applies to time-invariant linear systems with white
parameters. This algorithm avoids the discrete-time
domain and is presented in Section 4. It is new and
combines several techniques that have been published
individually. Section 5 describes the algorithm imple-
mentation for general time-varying compensation
problems and arbitrary values of the sampling
period. It also contains two numerical examples
illustrating that the numerical inaccuracy is overcome.
To further and more clearly illustrate this, a new
algorithm is developed and presented in Section 6. The
algorithm computes the sub-optimality of arbitrary
compensators in discrete-time as well as the delta
domain. It is applied to one example to quantify the

Figure 1. Discrete-time and delta-domain computations related to digital optimal and sub-optimal compensation. The new
developments presented in this article are marked bold.
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performance degradation of several fixed and floating
point discrete-time and delta-domain controller imple-
mentations. The outcome demonstrates the superior
behaviour of delta-domain controllers when the
sampling rate is high.

2. Digital optimal control problem and its

discrete-time equivalent

The digital optimal compensation problem concerns a
linear time-varying continuous-time system with white
stochastic parameters and additive white system noise.
The digital control is piecewise constant and computed
from previously obtained sampled measurements (van
Willigenburg and de Koning 2000). The continuous-
time system, the piecewise constant control and the
sampled measurements are described by

dx tð Þ ¼ dA tð Þx tð Þ þ dB tð Þu tð Þ þ � tð Þ, t0 � t � tN ð1Þ

u tð Þ ¼ u tið Þ, t 2 ti, tiþ1½ Þ, tiþ1 4 ti, i ¼ 0, 1, . . . ,N� 1

ð2Þ

y tið Þ ¼ Cix tið Þ þ wi, i ¼ 0, 1, . . . ,N� 1 ð3Þ

Assumptions and details concerning the stochastic
processes fAðtÞ, t0 � t � tNg, fBðtÞ, t0 � t � tNg,
f�ðtÞ, t0 � t � tNg, fCi, i ¼ 0, 1, . . . ,N� 1g and
fwi, i ¼ 0, 1, . . . ,N� 1g in Equations (1)–(3) can be
found in van Willigenburg and de Koning (2000) that
provides a full description of the problem. For our
purpose, it suffices to consider the problem data fully
specifying Equations (1)–(3) listed and explained below

�x0 2 Rn, Vx0 2 Rn�n, �A tð Þ 2 Rn�n,

�B tð Þ 2 Rn�m, �Ci 2 Rl�n,

VAA tð Þ 2 Rn1�n1 , VAB tð Þ 2 Rn1�n2 , VBA tð Þ 2 Rn2�n1 ,

VBB tð Þ 2 Rn2�n2 ,

VCC
i 2 Rn4�n4 , Wi, V� tð Þ 2 Rn�n,

n1 ¼ n2, n2 ¼ nm, n3 ¼ m2, n4 ¼ l2: ð4Þ

In Equation (4), �x0, Vx0 denote the mean value and
covariance matrix of the stochastic initial state
x0 ¼ xðt0Þ. Furthermore, �AðtÞ, �BðtÞ and �Ci denote the
mean values, i.e. the first moments, of the stochastic
system matrices AðtÞ,BðtÞ and Ci in Equations (1)–(3)
where the argument t � t0 represents continuous time
and the subscript i refers to the sampling instants ti in
Equations (2) and (3). Furthermore, n, m and l in
Equation (4) are the dimension of the state xðtÞ, the
input uðtÞ and the sampled output yðtiÞ, respectively.
VAAðtÞ, VABðtÞ, VBAðtÞ and VBBðtÞ in Equation (4)
are intensity and cross-intensity matrices of the
stochastic system matrices AðtÞ and BðtÞ.

Furthermore, VCC
i is the covariance matrix of the

stochastic output matrix Ci. Wi are covariance matri-

ces of the discrete-time additive white measurement

noise wi. Finally, V
�ðtÞ is the intensity matrix of the

additive white system noise �ðtÞ in Equation (1).

Observe that n3 in Equation (4) is not formally part

of the problem data. It is mentioned to remain

consistent with the notation in van Willigenburg and

de Koning (2000) and will be used later on.
Let E denote expectation (mean value). Then, the

quadratic cost criterion to be minimised is given by

J ¼ E xT tNð ÞZx tNð Þ
� �
þ E

Z tN

t0

xT tð ÞQ tð Þx tð Þ þ uT tð ÞR tð Þu tð Þ
� �

dt

� �
ð5Þ

Z 2 Rn�n � 0,Q tð Þ 2 Rn�n � 0,R tð Þ 2 Rm�m � 0 ð6Þ

To solve the digital optimal control problem, in van

Willigenburg and de Koning (2000) this problem is

converted into an equivalent discrete-time optimal

control problem. This problem consists of an

equivalent discrete-time linear time-varying system

xiþ1 ¼ �ixi þ �iui þ vi,

yi ¼ Cixi þ wi, i ¼ 0, 1, . . . ,N� 1 ð7Þ

having white stochastic system matrices �i, �i and Ci

and additive white system and measurement noise

vi, wi. The data fully specifying this system are listed

and explained below

�x0, V0 ¼ Vx0 , ��i, ��i, �Ci, Vi, Wi,

�i ��i, �i � �i, �i ��i, �i � �i, VCC
i

ð8Þ

In Equation (8), � denotes the Kronecker product

and Vi, Wi are the covariance matrices associated with

the discrete-time white noise processes vi and wi. In

Equation (8), ��i, ��i, �Ci are first moments and

�i ��i, �i � �i, �i ��i and �i � �i are second

moments of the stochastic system matrices �i, �i and

Ci. To present the main results of this article, it is

sometimes convenient to indicate the dimensions of

several second moment matrices appearing in

Equation (8). This is done as follows using subscripts

�i ��ið Þn1n1 , �i � �ið Þn1n2 , �i ��ið Þn2n1 ,

�i � �ið Þn2n2 ð9Þ

The subscript n1n2 in Equation (9) indicates a

n1 � n2 matrix and similarly for the others. Because �i,

Ci as well as �i,Ci are uncorrelated, the following

second moments are already specified by the data (8)

(Tiedemann and de Koning 1984),

�i � Ci ¼ ��i � �Ci, �i � Ci ¼ ��i � �Ci ð10Þ
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Also

Ci � Ci ¼ �Ci � �Ci þ VCC
i ð11Þ

The equivalent discrete-time quadratic cost

criterion

JN ¼ xTNZxN þ
XN�1
i¼0

xTi Qixi þ xTi Miui þ uTi Riui þ �i
� 	

ð12Þ

is equal to the original cost criterion J in Equation (5)

and is determined by the following data

Z 2 Rn�n, Qi 2 R
n�n, Ri 2 R

m�m, Mi 2 R
n�m, �i

ð13Þ

Mi in Equation (13) determines cross products in

the equivalent discrete-time quadratic cost criterion

(12), whereas �i are terms that are not influenced by the

digital input but are needed to compute the costs (12).

van Willigenburg and de Koning (2000) describe how

to transform the data (4) and (6) of the original digital

optimal control problem into the data (8) and (13) of

the equivalent discrete-time optimal control problem.

The part of this transformation that is sensitive to ill-

conditioning needs direct transformation to the delta

domain, indicated by arrow 3 in Figure 1. This part of

the transformation is therefore stated below. Let In
denote the identity matrix of dimension n and let the

other subscripts used below indicate dimensions, as in

Equation (9). Consider the following matrices that are

fully specified by the problem data (4),

Pn1n1 tð Þ ¼
�A tð Þ � In þ In � �A tð Þ þ VAA tð Þ ð14Þ

W1
n1n2

tð Þ ¼ In � �B tð Þ þ VAB tð Þ ð15Þ

W2
n1n2

tð Þ ¼ �B tð Þ � In þ VBA tð Þ ð16Þ

X1
n2n2

tð Þ ¼ �A tð Þ � Im ð17Þ

X2
n2n2

tð Þ ¼ Im � �A tð Þ ð18Þ

L1
n2n3

tð Þ ¼ �B tð Þ � Im ð19Þ

L2
n2n3

tð Þ ¼ Im � �B tð Þ ð20Þ

Zn1n3 tð Þ ¼ VBB tð Þ ð21Þ

Let � denote a zero matrix. Next define

F tð Þ ¼

Pn1n1 tð Þ W1
n1n2

tð Þ W2
n1n2

tð Þ Zn1n3 tð Þ

�n2n1 X1
n2n2

tð Þ �n2n2 L1
n2n3

tð Þ

�n2n1 �n2n2 X2
n2n2

tð Þ L2
n2n3

tð Þ

�n3n1 �n3n2 �n3n2 �n3n3

2
66664

3
77775
ð22Þ

and let �Fðtiþ1, tiÞ denote the transition matrix from ti
to tiþ1 of the homogeneous time-varying deterministic

system

_xF tð Þ ¼ F tð ÞxF tð Þ ð23Þ

Then, from Graham (1981), both the first and

second moments of �i and �i, that are part of the

equivalent discrete time problem data (8), follow from

the equality

�i��ið Þn1n1 �i��ið Þn1n2 �i��ið Þn1n2 �i��ið Þn1n3

�n2n1 ��i� Im
� 	

n2n2
�n2n2 ��i� Im

� 	
n2n3

�n2n1 �n2n2 Im� ��i

� 	
n2n2

Im� ��i

� 	
n2n3

�n3n1 �n3n2 �n3n2 �n3n3

2
66664

3
77775

¼�F tiþ1, tið Þ ð24Þ

Given FðtÞ in Equation (22), specified by

Equations (14)–(21) determined by the problem data

(4), the numerical computation of �Fðtiþ1, tiÞ in

Equation (24) is fully treated in van Willigenburg

and de Koning (2000).

3. Transformation from discrete-time to the delta

domain

The transformation from discrete-time to the delta

domain, presented in this section, is new. We first focus

on the part of the transformation that concerns the

white stochastic system matrices. To transform the

problem data from discrete-time to the delta domain,

first consider the delta operator � applied to the state xi
of the equivalent discrete-time system (7),

�xi ¼
xiþ1 � xið Þ

T
, T4 0 ð25Þ

where T4 0 is the fixed delta parameter (Middleton

and Goodwin 1990). In the case of digital control

problems, this parameter is generally associated with

the sampling intervals

T ¼ tiþ1 � ti, i ¼ 0, 1, . . . ,N� 1 ð26Þ

Equation (26) describes periodic sampling and is

used to simplify the presentation. As we will argue,

all our results also apply to nonperiodic sampling.
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After the transformation (25), the equivalent discrete-

time system is represented in the delta domain by

�xi ¼ ��
i xi þ ��i ui þ v�i , yi ¼ C�i xi þ w�i ,

i ¼ 0, 1, . . . ,N� 1 ð27Þ

where ��
i , ��i and C�i are white stochastic system

matrices and v�i and w�i additive white noise represen-

tations in the delta domain having associated covari-

ance matrices V�i and W�
i . Using Equation (25), the

following relations are established that determine the

transformation into the delta domain of the equivalent

discrete-time system

���
i ¼

��i � In
� 	

T
, ���i ¼

��i

T
, �C�i ¼

�Ci,

VCC
i

� ¼
VCC

i

T2
, W�

i ¼Wi ð28Þ

��
i ���

i ¼
�i ��i � ��i � In � In � ��i þ In � In
� 	

T2

ð29Þ

��
i � ��i ¼

�i � �i � In � ��i

� 	
T2

ð30Þ

��
i � C�i ¼

�i � Ci � In � �Ci

� 	
T

ð31Þ

��i � ��i ¼
�i � �i

T2
ð32Þ

C�i � C�i ¼ Ci � Ci ð33Þ

Finally, the discrete-time cost criterion JN in

Equation (12) transforms into

J�N ¼ xTNZ
�xN þ

XN�1
i¼0

xTi Q
�
i xi þ xTi M

�
i ui þ uTi R

�
i ui þ �

�
i

ð34Þ

where J�N ¼ JN. Therefore

Z� ¼ Z, Qi ¼ Q�
i , Mi ¼M�

i , Ri ¼ R�i , ��i ¼ �i

ð35Þ

Although Equations (28)–(33) and (35) represent

the problem data in the delta domain, the solution of

the equivalent optimal control problem in the delta

domain contains the following matrices (van

Willigenburg and de Koning 2010),

���
i ,

���i ,
�C�i , T��

i ���
i , T��i � ��i ,

TC�i � C�i , T��
i � ��i , T��

i � C�i ,

TVCC�

i , TW�
i ,

1

T
R�i ,

1

T
Q�

i ,
1

T
M�

i ,
1

T
��i ð36Þ

Therefore, transformation to the matrices (36) is
desired to solve the equivalent optimal control problem
in the delta domain. The transformation to
Equation (36) is fully determined by Equations (29)–
(33) multiplied by T, by Equation (35) with all the
matrices except for Z� and Z divided by T, and by
Equation (28), when we multiply the equalities
involving VCC�

i and W�
i by T.

4. Transformation from discrete-time to the delta

domain as T # 0

As to the consecutive transformations, first into
discrete-time and next into the delta domain, numerical
problems arise as T # 0 if we apply the association (26).
In that case, as T # 0, tiþ1 # ti, and the deterministic
discrete-time transition matrix �F in Equation (24)
tends to the identity matrix. As discrete-time transition
matrices tend to the identity matrix, discrete-time
representations and computations become extremely
sensitive to rounding errors (Middleton and
Goodwin 1990).

Suppose our linear system with white stochastic
parameters has time-invariant first and second
moments over ½tiþ1, tiÞ. Then, F in Equation (22) is
time invariant and using the association (26),

�F tiþ1, tið Þ ¼ eFT ð37Þ

��
F tiþ1, tið Þ ¼ �F tiþ1, tið Þ � In1þ2n2þn3

� 	
=T

¼ eFT � In1þ2n2þn3
� 	

=T ð38Þ

lim
T#0

��
F tiþ1, tið Þ ¼ lim

T#0
eFT � In1þ2n2þn3
� 	

=T ¼ F ð39Þ

Numerical computation of the right-hand side of
Equation (38) reveals the sensitivity to rounding errors
as T # 0, because it diverges from F instead of
converging to it as it should according to
Equation (39). This problem is overcome using an
alternative computation of eFT � In1þ2n2þn3

eFT�In1þ2n2þn3 ¼FE12,
E11 E12

E21 E22


 �
¼ e

F In1þ2n2þn3

� �


 �
T

ð40Þ

In Equation (40), the components of both block
matrices are all real square and have identical dimen-
sions. For all real square matrices F , numerical
computations of ��

F in Equation (39), using FE12

T

instead of
ðeFT�In1þ2n2þn3 Þ

T , do tend to F as T # 0 because
they do not become sensitive to rounding errors. As
T # 0 in Equation (40), E12! TI both theoretically
and numerically. Then, FE12=T! F and the limit (39)
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is also obtained numerically. This is illustrated by the
examples in the next section. For more information on
the computation (40), we refer to van Loan (1978) and
Middleton and Goodwin (1990).

Using the computation (40) circumvents the ill-
conditioning of our consecutive transformation into
discrete-time and the delta domain as T # 0.
It numerically restores the property (39). But
Equation (40) only applies to situations where F is
time-invariant. According to Equations (14)–(22)
and (26), this happens if the linear system has time-
invariant statistics over each sampling interval ½ti, tiþ1Þ,
i ¼ 0, 1, . . . ,N� 1. Fortunately, as T # 0, this is
approximately the case because tiþ1 # ti due to the
association (26).

5. The composite transformation and its numerical

implementation

We are now in a position to state the transformation
and its numerical implementation. Because transfor-
mation of the statistics associated with the equivalent
discrete-time system matrices �i, �i may suffer from
ill-conditioning, as explained in Section 4, their trans-
formation is described separately in this section. Apart
from this, transformation of the problem data to
discrete-time is fully described in van Willigenburg and
de Koning (2000). Part of this computation is
summarised in Section 2. Next transformation to the
delta domain, which is new, is described in Section 3.
In this section, we finally consider the transformation
of the statistics associated with the equivalent discrete-
time system matrices �i and �i.

Starting from Equations (14)–(23), determined by
the original problem data (4), we compute �Fðtiþ1, tiÞ
in Equation (24) by means of numerical integration, as
in van Willigenburg and de Koning (2000). Over each
sampling interval ½ti, tiþ1Þ, this numerical integration is
performed with a fixed time step Dt using a piecewise
constant approximation of FðtÞ,

F tð Þ ¼ F ti þ kDtð Þ, ti þ kDt � t � ti þ kþ 1ð ÞDt,

k ¼ 0, 1, . . . ,K� 1, K ¼ tiþ1 � tið Þ=Dt,

ð41Þ

According to van Willigenburg and de Koning
(2000), the time step Dt in Equation (40) is selected
such that (1) it is sufficiently small to guarantee
sufficient accuracy and (2) it results in a positive
integer number K. As long as the sampling rate does
not become very high, K4 1 is obtained in Equation
(40) to achieve sufficient accuracy. In this case, the ill-
conditioning in discrete-time does not occur and we
next compute the transformation from discrete-time to

the delta-domain data (36), as described at the end of

Section 3. This provides ��
Fðtiþ1, tiÞ when K4 1.

As the sampling rate does become high, K ¼ 1 will

provide sufficient accuracy. According to

Equation (40), K ¼ 1 implies using a constant

approximation of FðtÞ over ½ti, tiþ1Þ. In that case, the

computation of Equation (24) may be performed

according to Equation (37). Doing so,

Equations (38)–(40) apply. In the case K ¼ 1, to

transform problem data associated with �i,�i to the

delta domain, Equation (38) is used. Computation of

Equation (38) is performed using Equation (40) to

prevent ill-conditioning in discrete-time. This provides

��
Fðtiþ1, tiÞ when K ¼ 1.
From Equations (37), (38) and (24) observe that

��
F tiþ1, tið Þ ¼

1

T
�F tiþ1, tið Þ � In1þ2n2þn3
� 	

ð42Þ

Introduce the following notation

��
F tiþ1, tið Þ ¼

��11

F ��
12

F ��
13

F ��
14

F

� ��
22

F � ��
24

F

� � ��
33

F ��
34

F

� � � �

2
666664

3
777775 ð43Þ

where the sub-matrices in Equation (43) have the

same dimensions as those in Equation (24), used in

Equation (42). Then, from Equations (24), (42), (43)

and (28)–(30) observe that

���
i ¼ ��33

F 1 : n, 1 : nð Þ ð44Þ

���i ¼ ��34

F 1 : n, 1 : mð Þ ð45Þ

T��
i ���

i ¼ ��11

F � I� ���
i �

���
i � I ð46Þ

T��
i � ��i ¼ ��12

F � I� ���i ð47Þ

T��i � ��i ¼ ��14

F ð48Þ

where ��33

F ð1 : n, 1 : nÞ in Equation (44) denotes the first

n rows and first n columns of ��33

F . Similarly,

��34

F ð1 : n, 1 : mÞ in Equation (45) denotes the first n

rows and first m columns of ��34

F . According to

Equations (44)–(48), ��
F provides the delta-domain

problem data in Equation (36) associated with the

equivalent discrete-time system matrices �i, �i.

When performed in the manner described in this

section, the computation of ��
F does not suffer from

ill-conditioning in discrete-time.
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6. Principal application, examples of ill-conditioning

and performance improvement of delta-domain

controller computations and implementations

6.1. Principal application and example selection

Although 40 years old, the optimal control system

design methodology proposed by Athans (1971) is still

very attractive when the goal is to design a control

system that is nearly optimal while the system is

nonlinear and the cost function other than quadratic.

The design of the control system takes place at two

levels. At the top level, an optimal control problem is

solved off-line, assuming the nonlinear system to be

deterministic. In addition to the nonlinear nature of the

system, at this top level many types of constraints and

many types of cost functions can be handled making

this approach highly versatile.
Because the optimal control is open loop, and the

nonlinear system considered deterministic, at the

second level, an output perturbation feedback control-

ler (compensator) is designed. Because the compensa-

tor operates on the perturbation level linearised models

and quadratic criteria are appropriate as is very well

explained by Athans (1971). This is fortunate since the

associated optimal compensators require only a very

small number of on-line computations, as is required

by feedback in many applications, even though com-

putational power has increased significantly over the

last 40 years. This motivated our developments over

the years of theory and algorithms for digital optimal

full and reduced-order compensator design for linear

systems with deterministic and white stochastic param-

eters. The development of these algorithms in the delta

domain is justified because: (1) they unify controller

designs in continuous and discrete-time and (2) they

prevent ill-conditioning if the sampling rate

becomes high.
There is one important assumption underlying

Athans approach: the errors should remain sufficiently

small. This requires sufficiently accurate systems

modelling which in turn justifies application of optimal

control. Industrial practice often considers accurate

systems modelling expensive and cumbersome.

Although much inside and understanding is gained

from it, accurate systems modelling is not easily

achieved. To relieve the demand for accurate model-

ling, the compensator instead of optimal may be

designed to be more robust. Using white stochastic

parameters to represent the linearised dynamics at the

perturbation level, offers a way to design a compen-

sator that is robust on the one hand but nonconserva-

tive on the other (Bernstein and Greeley 1986). This

motivated our delta-domain development in this article

and in van Willigenburg and de Koning (2010) of

digital compensators for linear systems with white
stochastic parameters.

When developing and researching algorithms, we
always use numerical examples for verification and to
demonstrate, initially to ourselves, feasibility and key
properties. If these are the only goals, as in this article,
we preferably keep the examples small and simple.
Therefore, in this article, we have deliberately avoided
industrial examples, since these often introduce com-
plications unrelated to the algorithm development.
These may obscure our goals and moreover they
require much more room to describe. This does not
mean to say that we consider industrial applications
unimportant. On the contrary: control is an applied
science and considering industrial cases to us is a
major, next research step.

6.2. Examples of ill-conditioning

To illustrate the prevention of ill-conditioning and to
simplify the presentation, the next examples concern
two infinite-horizon time-invariant compensation
examples taken from van Willigenburg and de
Koning (2010). The infinite-horizon time-invariant
nature implies that all matrices in Equations (4) and
(5), representing the cost function and the statistics of
the continuous-time system, are assumed time
invariant. Furthermore, the following quadratic cost
function applies

J1 ¼ lim
N!1

1

N
JN ð49Þ

where JN is the equivalent discrete-time cost
function (12) with

Ri ¼ R, Qi ¼ Q, Mi ¼M,

�i ¼ �, i ¼ 0, 1, . . . ,N� 1
ð50Þ

due to the time-invariant nature of Equations (4)
and (5).

Example 1: Consider a digital optimal compensation
problem with data (4) and (6) equal to those of
Example 1 in van Willigenburg and de Koning (2010),
except for Wi ¼ 10�4diag 1 1

� 	
. Choose � ¼ 0:3.

Example 2: Consider a digital optimal compensation
problem with data (4) and (6) equal to those of
Example 3 in van Willigenburg and de Koning (2010),
except for Wi ¼ 10�4diag 1 1

� 	
. Choose � ¼ 2.

From van Willigenburg and de Koning (2010),
observe that VAA,VBB and VCC in Example 1 are
nonzero, while Example 2 is a singular infinite-horizon
time-invariant continuous-time compensation problem
that is highly difficult to solve numerically. It could
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only be solved by approximating it by consecutive

equivalent optimal control problems in the delta

domain. These equivalent optimal control problems

in the delta domain were actually computed using the

algorithm presented in the previous section. By taking

ever smaller values for T, down to 10�6, while using the

solution of the previous problem to initialise the next, a

numerical solution was obtained in van Willigenburg

and de Koning (2010).
A first demonstration of how the ill-conditioning is

prevented is given by Table 1. This table states matrix

norms which should theoretically be of the order T

(van Willigenburg and de Koning 2010) which we

selected to be 10�12. The norms concern the equivalent

problem data in the delta domain associated with

�i and �i of Example 1 and Example 2. The norms

were computed using Matlab with a machine constant

of 2:22 � 10�16. Because theoretically the norms are

of the order T ¼ 10�12, Table 1 clearly reveals that

errors occur in ���
i and T��

i ���
i when we do not

adjust the computation according to Equation (40), to

prevent ill-conditioning. The magnitude of the errors in

Table 1, however, may still be acceptable for most

controller computations. In the next section, using a

similar example, we will further investigate the numer-

ical ill-conditioning and the way it is prevented by

computations in the delta domain.
Finally, consider again Equation (26). This equa-

tion described periodic sampling. Because the linear

system dynamics and statistics, as well as the quadratic

criterion matrices, are time-varying in general, the

computations described in this article are different for

each sampling interval ½ti, tiþ1Þ, i ¼ 0, 1, . . . ,N� 1,

even if the sampling is periodic. Making separate

computations for each sampling interval ½ti, tiþ1Þ,

i ¼ 0, 1, . . . ,N� 1, allows us to change T in Equation

(26) for every such computation and interval. Doing

so, we effectively change Equation (26) into

Ti ¼ tiþ1 � ti, i ¼ 0, 1, . . . ,N� 1 ð51Þ

describing nonperiodic sampling. Stated differently,

when restricting the application of the delta-domain

representation in this article to each individual sam-

pling interval ½ti, tiþ1Þ, i ¼ 0, 1, . . . ,N� 1, we may

select the delta parameter differently for each individ-
ual sampling interval, as described by Equation (51).
Doing so, the results of this article apply to nonper-
iodic sampling as well.

6.3. Performance improvement of delta-domain
controller computations and implementations

Example 3: Consider a digital optimal compensation
problem with data (4) and (6) equal to those of
Example 1 in van Willigenburg and de Koning (2010),
except for RðtÞ ¼ 10�4diagð 1 1 Þ and Wi ¼

10�4diagð 1 1 Þ. Choose � ¼ 0:03.

The computation of optimal compensators, of the type
considered in this article, is generally performed off-
line, on advanced computers, e.g. running Matlab.
Matlab uses a highly accurate, double precision float-
ing point representation of real numbers. Despite this
fact, the discrete-time optimal compensator algorithm,
when executed in Matlab, becomes ill-conditioned when
the sampling time becomes very small. This is illus-
trated by Figure 2 that displays the minimum costs
computed for Example 3 using both the discrete-time
and delta-domain optimal compensation algorithm.
The algorithms are represented by the top right boxes
in Figure 1. Only when performed in the delta domain,
represented by the horizontal level B in Figure 1, the
optimal costs converge nicely to the one obtained in
continuous-time, as they should.

The implementation of compensators often takes
place on platforms with less accurate representations of
real numbers, such as micro-controllers, which are
sometimes still fixed point. For several fixed and
floating point representations of real numbers, in this
section we will quantify the optimal controller perfor-
mance degradation, when using discrete-time and
delta-domain fixed and floating point controller imple-
mentations. This will demonstrate the superiority of
delta-domain controller implementations if the
sampling rate is high. Computation of controller
performance degradation requires an algorithm,
executed in Matlab, that computes the performance
of a closed-loop system that consists of an arbitrary
compensator applied to our linear system with

Table 1. Matrix norms that should theoretically be of the order T ¼ 10�12.

Example Equation (40) jj ���
i �

�Ajj jj ���i �
�Bjj jjT��

i ���
i � VAAjj jjT��i � ��i � VBBjj jjT��

i � ��i � VABjj

1 Used 4.5828E� 12 2.0529E� 12 1.8514E� 11 2.4696E� 12 4.6474E� 12
1 Not used 2.2225E� 05 2.0529E� 12 9.8253E� 05 2.4696E� 12 4.6474E� 12
2 Used 7.9992E� 14 1.9984E� 13 1.6009E� 13 2.6006E� 12 4.0012E� 13
2 Not used 9.7667E� 05 1.9984E� 13 2.2204E� 04 2.6006E� 12 4.0006E� 13

L.G. van Willigenburg and W.L. de Koning516



stochastic parameters. This should preferably be a

delta-domain algorithm because the investigated

control systems are by definition close to being

ill-conditioned, due to the high sampling rate.
To simplify the presentation, the investigation and

algorithm presented in this section are again restricted

to the infinite horizon time-invariant case. The

algorithms for the finite horizon time-varying are

easily obtained from them. To obtain the algorithm,

first consider the closed-loop control system in

discrete-time

xiþ1

x̂iþ1


 �
¼

�i ��iL

KCi F


 �
xi

x̂i


 �
þ

vi

Kwi


 �
,

i ¼ 0, 1, . . . ,N� 1 ð52Þ

The matrices �i,�i and Ci and vectors vi and wi are

those of the equivalent discrete-time system (7).

Furthermore, xi represents the state of this system

and x̂i the full- or reduced-order compensator state

(de Koning 1992). Their first and second moments are

time invariant because the matrices in Equation (4) are

time invariant. Define

x0i ¼
xi

x̂i

" #
, v0i ¼

vi

Kwi

" #
, �0i ¼

�i ��iL

KCi F

" #
,

V0 ¼
V �

� KWKT

" #
ð53Þ

Then, the closed-loop system (52) may be written as

x0iþ1 ¼ �0ix
0
i þ v0i ð54Þ

Let P0i ¼ x0ix
0T
i , the second moment of the closed-

loop system. Then, from Equation (54),

P0iþ1 ¼ �0iP
0
i�

T
i þ V0 ð55Þ

When the closed-loop system is mean square stable

(ms-stable),

P0 ¼ lim
i!1

P0i ð56Þ

exists, P0 � 0 and P0 is the unique solution of

P0 ¼ �0P0�0T þ V0 ð57Þ

where the time index i of � is deleted because

�0iP
0�0Ti is independent of i in the time-invariant case

(de Koning 1992). Equations (55) and (57) are gener-

alised Lyapunov equations. The quadratic criterion

(49) has a finite value given by de Koning (1992) and

van Willigenburg and de Koning (2004),

J1 F,K,Lð Þ ¼ lim
N!1

1

N
JN ¼ tr Q0P0ð Þ,

Q0 ¼
Q �ML

�LTMT LTRL


 �
ð58Þ

To compute the criterion value (58) we need to

compute the limit (56), using Equation (55). This

constitutes the discrete-time algorithm to compute the

closed-loop system performance. This algorithm

is represented by the left box at the horizontal level

C in Figure 1. The closed-loop performance computed

by this algorithm is denoted by J1 F,K,Lð Þ.
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Figure 2. Minimum costs (Example 3) obtained from the discrete-time and delta-domain optimal compensation algorithm.
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Because instead of a discrete-time algorithm, we

prefer a delta-domain algorithm, below we derive the

delta-domain equivalent of Equation (55). First

observe from de Koning (1992) that

�0Pi�0T ¼ st�1 �0 ��0st Pið Þ
� 	

ð59Þ

where st denotes the stack operator. Furthermore

�0 ��0 ¼ T�0� þ Ið Þ � T�0� þ Ið Þ

¼ T2�0� ��0� þ T�0� � I

þ TI��0� þ I� I ð60Þ

�0 ��0
�
¼ T�1 �0 ��0 � I� I

� 	
¼ T�0� ��0� þ�0� � Iþ I��0� ð61Þ

Using Equations (59)–(61) we obtain from

Equation (55),

Piþ1 ¼ �0Pi�0T þ V ¼ st�1 �0 ��0st Pið Þ
� 	

þ V

¼ T st�1 �0 ��0
�

� 

st Pið Þ

� 

þ TV�

� 

þ Pi: ð62Þ

From Equation (62),

Piþ1 � Pi

T
¼ st�1 �0 ��0

�
st Pið Þ

� 

þ TV� ð63Þ

which, using Equations (61) and (59), corresponds to

the generalised delta-domain Lyapunov equation

�P ¼ T�0�P�0�T þ�0�Pþ P�0�T þ TV� ð64Þ

To compute the limit (56), we iterate the delta-

domain equivalent (62) of Equation (55),

Piþ1 ¼ T st�1 �0 ��0
�

� 

st Pið Þ

� 

þ TV�

� 

þ Pi ð65Þ

starting from Pi ¼ � until convergence. As in de

Koning (1992), the trace of Pi is used to detect

convergence. The value of the delta parameter T

formally equals the sampling interval. Since we need to

find the steady-state solution of Equation (65), the

objective of the algorithm is to quickly find the

value of Pi, that sets to zero the term

ðst�1ðð�0 ��0
�
ÞstðPiÞÞ þ TV�Þ in Equation (65). To

achieve this, the first value of T in Equation (65)

may actually be changed into a different positive value,

to promote faster convergence, if possible. Associated

with this observation, in the continuous-time case, i.e.

in the limit T # 0, TV� becomes constant while the first

appearance of T in Equation (65) may be interpreted as

the step size of Euler numerical integration (van

Willigenburg and de Koning 2010). The performance

of the closed-loop system computed by this delta-

domain algorithm, represented by the right block of

the horizontal level C in Figure 1, is denoted by

J�1ðF
�,K�,L�Þ.

To mimic the implementation of discrete-time and
delta-domain controllers in fixed or floating point
processors, the discrete-time controller matrices and
the delta-domain controller matrices were rounded in
Matlab to an associated number of digits. Next, the
rounded discrete-time controller matrices were con-
verted to the delta domain. Then, for both types of
controllers, using the delta-domain algorithm
described in this section, the associated closed-loop
performance, represented by J�1ðF

�,K�,L�Þ in Figure 1,
was computed in Matlab. Figures 3–6 represent the
results. In Figures 4 and 6, for small T, several values
are unrecorded because the closed-loop system was no
longer ms-stable implying infinite costs since the limit
(56) tends to infinity. The figures clearly illustrate the
significant loss of performance, and sometimes even
loss of ms-stability, associated with the implemented
discrete-time controllers, when the sampling rate
becomes very small. The figures also reveal the
superior performance and behaviour of the imple-
mented delta-domain controllers. Note that the closed-
loop computations do not incorporate the rounding of
measurement and control values, that also takes place
in digital controllers. Therefore, the computed loss of
performance is conservative.

7. Conclusions

Equivalent optimal control problem formulations in
discrete-time are generally used for digital optimal
control system design. They explicitly consider the
continuous-time performance (inter-sample behaviour)
as well as the sampling phenomena. As the sampling
rate becomes very high, equivalent discrete-time
optimal control problem formulations become ill-
conditioned numerically. As a result, their numerical
solution and the associated compensator implementa-
tion become inaccurate and inefficient. For time-
varying and time-invariant compensation problems,
involving systems with white stochastic parameters,
this problem is circumvented in this article by com-
puting equivalent optimal control problems in the delta
domain. For sampling intervals larger than the time-
step required for numerical integration, transformation
to discrete-time followed by a transformation to the
delta domain is used. The latter transformation is
presented for the first time in this article. For sampling
intervals larger than the time-step required for numer-
ical integration, ill-conditioning in discrete-time does
not occur and time-varying compensation problem
data can be handled. For sampling intervals less or
equal to the time-step required for numerical integra-
tion, the problem data may be approximated over each
sampling interval by time-invariant data. If the
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problem data are time invariant, an alternative trans-
formation to the delta domain, presented for the first
time in this article, is adopted that does not suffer from
ill-conditioning in discrete-time. The principle

application of the results presented in this article, and
in van Willigenburg and de Koning (2010), concerns
the robust compensation of nonlinear systems along
optimal control and state trajectories (Athans 1971).
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Figure 3. Minimum costs (Example 3) for optimal discrete-time and delta-domain floating point control implementations with a
three-digit mantissa.
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Figure 4. Minimum costs (Example 3) for optimal discrete-time and delta-domain floating point controller implementations with
a two-digit mantissa.
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Numerical examples were used to illustrate and
quantify the performance degradation of discrete-
time controllers when the sampling time becomes
very small. The same examples showed that this

degradation is largely prevented by working in the
delta domain.

Throughout this article we assumed synchronous
sampling, meaning that all control variables and
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Figure 5. Minimum costs (Example 3) for optimal discrete-time and delta-domain fixed point controller implementations with
three digits.
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Figure 6. Minimum costs (Example 3) for optimal discrete-time and delta-domain fixed point controller implementations with
two digits.
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measurements are updated simultaneously at the sam-
pling instants. Allowing for asynchronous sampling
requires the introduction of systems models and
compensators having time-varying dimensions (van
Willigenburg and de Koning 2001, 2008). To accom-
modate for this in the delta domain requires an
interesting generalisation of the delta operator that
we are currently investigating.
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