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Figure 3.1: Digital control system

F, represents the optimal feecbhack, u: the feedforward determined
by the digital tracker, while the complete state is measured.

For reasons to be explained later we will chose the control
weighting of the digital tracker everywhere equal to zero. In this
case, dependent on the magnitude of the sampling time, large
feedback gains occur. In practice they may cause instability.
Therefore we also consider an alternative where the digital
optimal control u,(t), computed from the @igital tracker with the
control weighting everywhere equal to zero, is presented to the
system in an open loop fashion. In this case a digital optimal
perturbation controller is used to control small deviations from
the trajectory ud(t), xa(t) toc zero. xd(t) represents the state
response of the system (4) to the the digital optimal control
ud(t). This optimal perturbation controller is computed using the
digital optimal regulator result. In this case the choice of the
weighting matrices of the digital regulator determines the
feedback. These weighting matrices may ofcourse be chosen
independently from the ones in the tracking problem which
determined the trajectory u {t), x,(t). 8o this appreoach seperates
the choice of the optimal control from the choice of the optimal
feedback. The digital control system that results in this case is
repregented by figure 3.2.
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Figure 3.2: Digital perturbation control system

3.2 The digital optimal regulator and tracker for linear time
varying systems

Consider the deterministic continuous-time linear
time-varying system

x(£) = A(t) x(t) + B(t) u(t), (19a)
with known initial state

X(tg) = x (19b)

ol
where A(t) and B(t) are the system matrices. The control lIs
plecewise constant, i.e.

ui{t) = u(t

te[tk k=0,1,2,3...., {l9c)

Y rEypn) s

where t, are the, not necessarily equidistant, sampling instants.
We assume complete state information at the sampling instants, so
x{ty), k=0,1,2,3,... are available. The latter assumption is valid
for the X-Y robot since both link positions and speeds, i.e. the
state variables of (4), are measured. However we may replace the
state x(tk) by its estimate generated by the Kalman one step ahead
predictor (Van Willigenburg and De Koning, 1990b) in which case

le68



COMPUTATION OF DIGITAL OPTIMAL CONTROLLERS FOR CARTESIAN ROBOTS

the continuous-time system and the measurements may be corrupted
by additive white noise.

The digital optimal regulator problem for the system (19) is to
minimize

t
£

3 = ["x™e) ety x(ty + u(t) R(E) u(t)) at + xT(ey) H X(t) ],
t

0
(20)

where Q(t)=0, Hz=0 and R(t)=0. Furthermore

o=t (21)

Nl
where N is a positive integer.

The digital optimal tracking problem takes the following form.
Given the system (19) and a reference state trajectory

xr(t), t0 = t = tf, (22}
minimize
t
£ T T
J = I [(x(ty=x.(t))" Q(t) (x(t)-x.(t)) + u”(t) R(t) u(t)] dt +
t
0 T
(X(tg) = x.(£))7 H (x(t) - x.(t)) (23)

where again (21) holds and we assume Q(t)=0, Hz0 and R(t})=0,.
The solution of the digital optimal regulator problem called the

digital optimal regulator is computed and given by {Van
Willigenburg, 1990b)
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== (KR, ML) X, k=0,1,2,..,N-1, (24a)
o T -1 7
K= (MeSparalctRy) 7 TSy 8 (24b)
T T
s, =80T,k s, o (8g-T K1) +KITR K24QE, Sy =H, (24¢)
i =1 T
8=, T, RHT, (244)
oS
Q= ~My R "M, . {24¢e)
where,
tk+l T
Qe =I 7 (t, L) Q) B(t,t,) dt, (25a)
T
Cx+1 _m
M, = j #T(t,t,) o(t) T(t,t) at, (25b)
Ty
Cxs1 T
R, = I [R(t) + IT(t,t,) Q(t) T(t,t,)] at. (25¢)
Ty
and where
t
Tt t,) =J &(t,s) B(s) ds (253)
ty
and finally
B, = 2(ty 0 .t,) (25¢)
Iy = Tty ) (25F)

where ¢ is the state transition matrix of system (19a). Eguation
(25e) and (25f) determine the so called eguivalent discrete system

+ I, u (26)

Xppp = e By ¥ Ty

which describes the system behavior of (19a) at the sampling
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instants.

From {24a) it is obvious that the solution is given in feedback
form, since besides K all matrices appearing in the solution can
be computed off-line (Van Willigenburg, 1990b).

The solution to the digital optimal tracking problem called the
digital optimal tracker is given and computed by (Van Willigenburg
1990b)

1 T

-1,T 2
uy == (KGR ML) X+ v KT Km0, 1,2, 4 N1, (27a)
_ T -1..T
K= (CySppa TRy ) TSy B%r (270)
1_ T -1.7
Kp= (R HT3 8, 1 Ty ) Ty (27¢)
2 T -1
KZ= (R TS, Ty (278)
e T _ T _
8= (#L-T KL TS, | (B =T\ KO)+WKLIR KIHOL,  Sy=H, (27e)
ot sy T K K _
vi= (2L -T k) Toy kT T vy=Hx (t5) (27¢)
Y
&L=t -T'\ R, "M, {27q)
=1 T
Q= MR My, (27h)
S
L{=Ly ~T\ R "M . (271)
where (25) holds and
o1
L, J xL(t) Q(E) &(t,t,) at, (28a)
tx
tk+1 T
T, = J xL(t) o(t) T(t,t,) dt, (28b)
ty
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t
X, = J T ot x,(€) dt, (28c)
t
k

The solution is in feedback form, which can be observed from the
first term in (27a), since all matrices except X, can be computed
off-line {Van Willigenburg, 1990b). Note that the second and third
term of (27a) constitute feed forward components.

3.3 Optimal digital tracking controller computation for the
X~-Y robot

In paragraph 3.2 we presented the digital optimal
regulator and tracker for linear systems. The robot dynamics (4)
may be written as

X 0 0o 1 of | x 0 0

P P a?

Yo [= |0 O O M | ¥ (0 0 [uf]. (29a)
fp 0 0 v, 0 ?p bx G Y

- 0
yp 0 0 vy yp o] by
where

s \ .
u, _ u, _ 51gn(}.cp)cx/bx (29D)
u§ uy sign(yp)cy/by *

From (29b) we see that if both links continue to move in the same
direction, the non-linear terms in (4), involving the Coulomb
friction, c¢an be compensated for by constant values of the
control. Therefore this compensation can be realized with a
piecewise constant control. Only if the direction of the motion of
a link changes during a sample interval the compensation cannot be
realized by a plecewise constant control. Introducing

o (E)

x.(8) = | Ypr(®) |, (30)
Ko (£)
P (t)
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from {29b) we have

[ux(:)] _ [u%(z)] . [Sign(§pr(:))cx/ix]. (31)
u, () ug (t) sign(y,, (t))e,/b,

If the motion of a link during a sample interval does not continue
in the same direction we will not compensate the coulomb friction.
Therefore we have

u, (t,) ul(t,) . mxsign(ﬁpr(tk)}cx/bx (322)
= ’ . . » a
uy(tk) uy(tk) mySlgn(ypr(tk))cy/by
where
m, =1 (32b)

tk+1)) otherwise

if sign(xpr(tk)) equals sign(xpr(

m, =0 (32c)

and

m_ =1 324
v { )

if sign(ﬁpr(tk)) equals-sign(?pr(tk+l)), otherwise
m =0 (32e)

The second term in (32a) also constitutes a feed forward

component, which can be computed off-line.

Given the compensation of the coulomb friction in the sequel we
may consider the linear system {(29a) with ué and u§ being the
contreol variables. Given any reference state trajectory (22) we
can compute the digital optimal tracker (27) once @Q(t), R(t) and
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H, the design parameters, are chosen. A natural cholice 1is to
punish all deviations from the trajectory equally, i.e. to let
Q(t) be time-invariant. Since we want the digital control to be
such that deviations from the reference state trajectory are
minimized another natural choice is

R{t) = 0. (33)

Any other choice of R{t) would result in a compromise between the
magnitude of the control and deviations from the reference state
trajectory. The philosophy behind the choice of (33) is that if
the contrel obtained with (33) exceeds the bound (9b) the
reference state trajectory is not suited to be realized with the
¥-Y robot and another reference state trajectory sghould be
obtained. Of course if one persists in using this reference state
trajectory R(t) can be chosen such that the bound (9%b) is not
violated. Note that although +the continuous-time and the
discrete-time tracker (Lewis 1986) do not allow (33), since this
results in singular problems, the digital-tracking problem, given
{33), is non-singular (Van Willigenburg and De Koning 1990a).

8ince in the case of robot motion contrel we are generally only
interested in deviations of the prescribed 1link positions a
natural choice for Q(t) is

0

9y
a(t) = [© % (34)

4]

0

o0
o Q@ o o
o o O O

where d, is a constant. At the final time however we generally
want the robot to stand still as well so a natural choice of H is

(35)

[= 2 =T - T 4
o o T oo
o F o Q0
g o o o
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where again hl and h2 are constants. Given (33), (34), (35) the
optimal digital control and corresponding state trajectory will
depend on the ratios hl/ql and h1/h2‘ Only the minimum cost will
depend on the absolute wvalues of qy 0 hl and hz. In the seqguel the
following choice is wmade based on experiments and a compromise
between the reaching of the final state and the tracking error
which occurs.,

q, = 1.0, (36)
h1 = 0,3, (37a)
h2 = 0.1, (37b)

Furthermore in the sequel we will assume equal sampling intervals.

1.2,
t,,. -t =T, (38)

where T is the sampling time which varies from 60 to 200mS.
Finally all figures in the sequel are based on measurements or
computations performed every 10mS, to insure proper monitoring of
the inter-sample behavior. So given a reference state trajectory
the tracking problem (19),.(22), (23) is completely determined by
(29a), (5), (6), (13}, (24), (17), (18), (33},...,(38). The
reference state trajectory, according to (21) must be time scaled
such that the final time is a multiple of the sampling time (38).
The time-scaling is chosen such that the final time of the
time-scaled trajectory equals the nearest multiple higher than the
original final time. From the solution (27) of the tracking
problem and the eguivalent discrete time system dynamics (26) we
may compute the dJdigital optimal control and the corresponding
state trajectory given the initial state of (26). At this stage we
assume the initial state to match the reference state trajectory

i.e,

175



COMPUTATION OF DIGITAL OPTINAL CONTROLLERS FOR CARTESIAN ROBOTS

x(ty) = x.(t)) (39)

This is a reasonable assumption since before executing the motion
we control the system to the desired initial state Xn.(ty) .
Eguation (32a) should be applied to obtain the control after
coulomb friction compensation. Figure 3.3a displays one component
of a time-optimal reference state trajectory obtained from Van
Willigenburg (1990a) after time scaling, i.e. the desired
translation of the X~1link. Furthermore the corresponding component
of the solution computed assuming (39), i.e. the X-translation
realized with the digital optimal control, obtained after coulomb
friction compensation, is displayed. If the control would have
been a continuous-time control from (3} and (30) we can easily see
that if

u (t) = (ipr(t) + v, ﬁpr(t) + o, sign(kpr(t))) / by, (40a)

U (€)= (Fp(8) + vy Y, (t) + o sign(y,,(€))) / by, (40b)

Y “pr b 4

we would have a situation of perfect tracking i.e.
x{t) = x (). (41)

Since (39) holds the differences in figure 3.3a are completely
caused by the fact that the control is constrained to be piecewise
constant. In fact the time-optimal reference state trajectory of
figure 3,3a was obtained assuming a continuous-time control with
the following conservative bounds on the control variables (Van
Willigenburg, 19%0a),

lu | = 5.00, {42a)

lu_| = 5.00. (42b)
Y

The actual bounds of the control variables are

Euxl = 10.00, {43a)
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lugl = 10.00. (43b)

Figure 3.3b shows the results for the Y-link. Figure 3.4 and 3.5
are based on the same time-optimal reference state trajectory.
Only the sampling time was chosen differently. Clearly, as
expected, smaller sampling times allow better tracking of the
reference state trajectory. Note however that the tracking error
in practical situations is not just caused by the piecewise
constant nature of the control but also by modeling and
measurement errors and uncertainties. In the next section we will
demonstrate that modeling and measurement errors and
uncertainties, dominate the tracking error in our application.
Figures 3.3c,d, 3.4¢,d and 3.5¢,d display the values of the
feedback coefficients which reach a steady state value since the
linear dynamics are time-invariant. Obviously if the sampling time
increases the feedback decreases. This can be explained as
follows. In digital control systems the sampling time may be
viewed as a dead time. It is well known that systems with a dead
time are destabilized by large feedback gains, which gets worse if
the dead time increases. On the other hand feedback helps to speed
up or realize convergence of the tracking error. Obviously a
compromise is required, where the feedback decreases if the dead
time increases. Finally figure 3.6 shows results based on a
time-optimal reference state trajectory, again obtained from Van
Willigenburg (1990a), computed using less conservative bounds on
the control variables,

qul s 8.00, (44a)

lu | = 8.00, (44b)

3.4 Digital controller implementation and experimental
results

Figure 3.7 displays +the results obtained with the
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implemented d&igital controller considered in figure 3.3. The
prescribed translations of the axes egqual the realizable
translations in figure 3.3. Figure 3.8 shows the results obtained
with the implemented digital controller considered in figure 3.4.
If we implement the digital controller considered in figure 3.5
large feedback gains, shown in figure 3.5c,d result and large
tracking errors occur. We believe that this is mainly caused by
backlash which from figure 2.1 is obviously present in the X-1link
but is not considered in the dynamic model (4). Other unmodeled
dynamics such as flexibility in the transmission may also cause
unsatisfactory behavior when the feedback gains become too large.
One way to prevent the feedback gains from becoming too large is
to chose R(t) unegual to zero. Then however a compromise between
the magnitude of the tracking error and the control is found,
while our aim was not to compromise. We therefore want to separate
the choice of the feedback from the choice of the digital optimal
control., Using the solutions shown in figure 3.3 and 3.4 based on
{(39) we may apply the optimal digital control to the system in an
open loop fashion and use a so called perturbation'controller to
control deviations from the state trajectory to zeroc. The design
of this perturbation controller, as will be shown, constitutes a
digital regulator problem. The feedback which determines the
golution of this regulator problem is influenced by the choice of
the cost matrices R(t), Q{t) and H in (20). These matrices can be
chogen independently from the matrices Q(t), R(t) and H of the
tracking problem {(23) which resulted in the open loop control,
Consider the following perturbation variables

1

Ax(t) x({t) - xd(t) OStstf, (45a)

Au(t)

u(e) - uy(t) ostst., (45b)

vwhere u, and X3 constitute the solution of the tracking problem
given (41) and Au is again constrained to be piecewise constant.
The linear dynamics of the perturbation variables are given by
(30a), while the objective ig to control Ax to zero using Au, so

we have a digital regulator problem. The solution of this digital
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regulator problem is given by (24) and characterized by the
feedback,

-1.T

F, = K/ x Mo k=0,1,2,..N-1 (46)

X k + R

Given {44) the controller takes on the following form
u(t) = ud(tk) + FkAx(tk), tk<tstk+l, k=0,1,2,..N-1 (47)
Based on experiments we have chosen the following values of Q(t),

R(t) and H for the digital regulator problem, determining the
perturbation controller, i.e. the feedback (46),

(48a)

a(t) ' Ostst .,

o O B O
[= N = T < B -
[= 2= = I = ]

R(t) 0=t=t (48b)

fl

I
1
)
=)
- O
o
[ |

He= |0 03 0 o0 (48¢)
¢ 0 0.1 0

0 0 o 0.1

The feedback gains Fy obtained with these values are shown in
figure 3.9a,b and again reach a steady state value. Figure 3.9
furthermore shows the results obtained with the iImplemented
controller (47). Finally figure 3.10 shows the results obtained
with the implemented controller based on figure 3.6. As in the
case of figures 3,7 and 3.8 we again directly implemented the
digital optimal tracker result.

From the figure 3.7,..,3.10 we observe that using sampling times
up to 100mS results in tracking errors smaller than 1 cm, which

seems a good result observing that the link velocities reach
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values of about 1 m/S. Finally observe that the tracking errors
which are caused by model and measurement inaccuracies dominate
the errors due to the piecewise constant constraint on the control
shown in figures 3.3,..,3.6.

4 Conclusions

We have treated a procedure to design and compute digital
optimal tracking controllers for cartesian robots where both
viscous and coulomb friction are considered to be part of the
robot dynamics and where the influence of gravity is included. The
design is based on the recently developed digital optimal
regulator and tracker and assumes the robot motion as a function
of time, to be known 1in advance. While usual design procedures
only consider the behavior at the sanpling instants, and therefore
demand “small" sampling times, both the digital optimal regulator
and tracker explicitly consider the inter-sample behavior,
allowing for "large" sampling times, In the case of robot control
this is important since the computational burden on the computer
is generally high.

Based on our procedure we designed and computed digital
controllers for an industrial cartesian X-Y robot. Experimental
results obtained with the implemented digital controllers
demonstrated that sampling times which are generally considered
too large for robot contreol lead to good results. A robot motion
control problem is a tracking problem. The digital optimal tracker
may be implemented directly since the solution is in feedback
form. Large feedback gains however, may result in unsatisfactory
behavior due to for instance unmodeled dynamics. Large feedback
gains occur when the sampling time is "small". Therefore we also
presented a method by which it is possible to design the feedback
separately. The method is bkased on the idea of perturbation
contrel, and the perturbation controller is designed using the
digital optimal regulator result.

Finally if we combine our design procedure with a method to
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compute time-optimal motions for cartesian robots, based on
continuous~time controls (Van Willigenburg, 19%0a), we obtain a
two step procedure to design digital time-optimal controllers for
cartesian robots.
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Figure 2.1b Step response motor current controller

T T T T ¥

Step from -9 to +9 Ampere

0 1 2 3 4 5

Time in milliseconds
182



Figure 2.2a

Velocity response X-link
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Figure 3.1a
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Figure 3.1b

Prescribed and realizable translation ax2
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Feedback coefficients

Feedback coefficients

Figure 3.1
¢ Feedback ax1 for final 0.89 seconds
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Feedback coefficients

Feedback coefficients
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Figure 3.2c
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Feedback coefficients

Feedback coefficients

Figure 3.3¢

Feedback ax! for final 0.95 seconds
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Feedback coefficients

Feedback coefficients

Figure 3.4c Feedback ax1 for final 0.89 seconds
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CHAPTER 3

COMPUTATION OF TIME-OPTIMAL CONTROLS APPLIED TO RIGID MANIPULATORS
WITH FRICTION (co author R.P.H. Loop)

~Abstract-

In this paper we bpresent a nhumerical procedure to compute
non-singular time-optimal solutions for nonlinear systems, linear
in the control, with fixed initial and final state and bounded
control, Part of our procedure is a new nhumerical test, which
determines whether bang-bang solutions satisfy Pontryagin’s
Minimum Principle. This test reveals the new important fact, that
for a nonlinear systems, linear in the control and with dimension
n, the probability that a bang-bang solution with more than n-1
switches satisfies Pontryagin’s Minimum Principle is almost zero.
Using a parameter optimization procedure we search for bang-bang
solutions with up to n-1 switches which transfer the system from
the initial to the final state. If no controls with up to n-1
switches can be found to satisfy Pontryagin’s Minimum Principle
the problem is very likely singular. We apply our procedure to the
time-optimal control problem for rigid manipulators where friction
may be included in the dynamics. We will demonstrate that some
solutions mentioned in the 1literature to satisfy Pontryagin’s
Minimum Principle deo not. A class of time-optimal control problems
turns out to be singular. To solve these problems we propose and
demonstrate the methed of control parameterization.

1. Introduction

An assembly task performed by robotic manipulators generally
involves the transportation of an object or a tool from one
location to another. This operation is called a "point to point
motion" and is characterized by prescribed initial and final
positions and velocities of the robot links. The link positions
and velocities may be considered as the state variables of the
robotic manipulator. To maximize productivity the objective is to
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perform the "point to point motion" in minimum time. This minimum
time is 1limited since the actuation torques of the 1links are
limited. The problem of performing a "point to point motion" in
minimum time therefore constitutes a time-optimal control problem
with fixed initial and final state, and bkounded control, and is of
great importance.

For an extensive review of earlier work on this subject we refer
the reader to Chernousko et. al. (1989). We may roughly divide the
work into three categories. One category uses linear models of
which the solution to the time-optimal control problem may be
computed, Some approximate the nonlinear robot dynamice, which are
linear in the control, by a linear model (Kahn and Roth 1971, Kim
and Shin 1985, Wen and Desrocher 1986, Nijmeyer et. al. 1988),
others use feedback to compensate Ffor nonlinear terms (Freund
1975, Katupitiya 1986) to arrive at a 1linear model. This is
possible since robotic manipulators constitute so called feedback
linearizable systems. The disadvantage of the latter is that due
to the feedback the bounds on the control variables becone
state-dependent and have to be approximated by constants.

A second category (Sahar and Hollerbach 1285, Rajan 1985, Shiller
and Dubowsky 1989) uses the solution of the time-optimal control
problem along a prescribed path (Bobrow, Dubowsky and Gibson 1985,
Shin and Mc Kay 1986, Van Willigenburg 1990). Using some
optimization technique a path which connects the initial and final
state 1is searched for that possesses the smallest minimum
travelling time. A disadvantage of this method is that an
assumption has to be made concerning the shape of the path, while
the solution to the problem turng out to be very sensitive to the
shape of the path.

The third category, like the second, considers the ‘'true"
nonlinear dynamics but except for Van Willigenburg (1990a) neglect
friction (Ailon and ILangholtz 1985, Sontag and Sussmann 1985,
1986, Wen 1986, Geering et. al. 1986, Chen 1989%). In this
category no assumptions concerning the solution have to be made.
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Pontryagin’s Minimum Principle, which states necessary conditions
for a time-optimal «control, is used to investigate the
time-optimal control problem, However, except for Geering et. al.
(1986), no procedures to compute time-optimal solutions have been
presented within this ocategory. The publications only state
results concerning the form of the solution. Sontag and Sussmann
(1985, 1986) demonstrate that the problem may be singular.

In this paper we will present a numerical procedure to compute
time-optimal controls for nonlinear systems, linear in the
control. If the time-optimal control problem is non-singular the
time optimal control according to Pontryagin’s Minimum Principle
is of bang-bang type. Our procedure uses a parameter optimization
routine to compute bang-bang controls which transfer the system
from the initial to the final state using a penalty for deviations
from the final state to force the final state to be reached. The
parameters to be optimized are the switch times and the final
time. However, bang-bang solutions that transfer the system from
the initial to the final state, do not necessarily satisfy
Pontryagin’s Minimum Principle. A new numerical test, derived in
this paper, is applied to the solution and determines whether or
not bang-bang solutions satisfy Pontryagin’s Minimum Principle.
This test reveals a new important fact, concerning time-optimal
solutions for nonlinear systems, linear in the control. For such a
system with dimension n, the probability that a certain bang-bang
solution with more than n-1 switches satisfies Pontryagin’s
Minimum Principle is almost zero.

As an example we will apply our numerical procedure to the IBM
7535 B 04 robot. Geering et. al. (1986) computed time-optimal
solutions for this robot. Their work initially served as a
reference for ours. We demonstrate that we find exactly the same
bang-bang solutions transferring the robot from the initial to the
final state. Although Geering et. al., (1986) state that they all
satisfy Pontryagin’s Minimum Principle our numerical test reveals
that some of them do not, Finally we demonstrate that a method
based on control parameterization (Goh and Teo 1988, Teo, Goh and
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Lim 1989) generates solutions for non-singular problems involving
the IBM 7535 B 04 robot, that are very close to the optimum. The
method based on control parameterization can be applied to both
singular and non-singular problems. For robotic manipulators it is
in both cases expected to generate solutions that are very close
to the optimum. The method explicitly considers the contrel to be
piecewise constant. This is a realistic assumption since robotic
manipulators are controlled by digital computers. Furthermore it
allows for the inclusion of bounds on the individual 1link
velocities which should be considered in practice as well (Van
Willigenburg, 1990b). Finally we note that our numerical
procedure, as well as the method based on control
parameterization, aliow for the inclusion of gravity and friction
in the robot dynamics,

II. Dynamics of rigid manipulators with friction

The dynamics of a rigid N-link manipulator with friction can
be written as (Asada and Slotine, 1986)

T = M(8)d + V(e,8) + F(8,8), {1a)
where
6 =(8,,8,,..,8,) [1b)]

is an Nx1 vector containing the joint angles of the 1links and
T = (T T,ee4Ty) {lc]

is an Nx1 vector containing the actuation torques, which are
considered to be the control variables., M(6) is an Nxi
positive-definite inertia matrix, V(9,8) 1s an Nxl1 vector
representing centrifugal and Coriolis forces, G{@) 1is an Nxi
vector of forces due to gravity and F(6,6) is an Nx1 vector of
friction terms.
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To investigate the time-optimal control problem we will write the
nonlinear system (1) in state space form, the state and control
vector being (OT,éT)T and T, respectively. Since M(8) is positive
definite we obtain from (1)

&= W) [ T - V(6,8 - G(8) - F(6,8) ]. 2]
Introducing

x, =8 [3a]
X, = ] {3b]

x

X = [ x; ] [3c]
u=r (33}
T=V+0G+F {3e]

(2) can be written in state space form using (3)

©
xl = xz [4a)

b4
2

1l

-7 (x,)T(x) + W(x)u. [4b)

Observe that the dynamics (4) are linear in the control. In the
gsequel the index I will refer to the i-th component if it is
associated with a row or column vector and to the i-th column in
case of matrices.

Each component of the control vector u is assumed to be bounded.

Iull % bi, i=1,..,N [5)

If for instance the manipulator is actuated by current controlled
DC-motors, the torgue is proportional to the motor current, which
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is limited in case of DC-motors.

III, The Time-optimal Contrcl Problem

Consider a nonlinear time-optimal control problem, linear in
the control. Given the system

¥ = f(x) + B(X)Uu , [6a]
where x e R", u ¢ R, r = n, with fixed initial state

x{t)) = x, [6b]

and bounded control
tu” =a , i=1,..,r. (71

Minimize the cost criterion

tf
It = | @, (8]

t

subjected to the final state constraint

x(t) = x, (91

where X, is fixed and t, is free.

The Hamiltonian for the system (6a) and the cost criterion (8) is
given by

H(x,u,A) = 1 + AT[(f(x) + B(x)uj, (10]

vhere A is the costate of the system (6a). The costate variables
satisfy the adjoint differential equation
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-k o= SH {111}

Pontryagin’s Minimum Principle states that a necessary condition
for an optimal control is that it minimizes the Hamiltonian for
optimal values of the state and costate, i.e. {Lewls, 1986}

Hx®,u® A s #x®,u,2%)  all adnmissible u, [12)

where the superscript * denotes an optimal quantity. Since (10) is
linear in the control, we oktain from (10) and (12) the following
~ control law

sta, it [AT(t)B],<0,

*

u (t) = t, st st (13}
\~ai if (AT(t)BI >0,

where for obvious reasons {AT(t)B]l Pty st oSt is called the
switching function corresponding to the control variable u (t). If
one or several of the switching functions are equal to zero over
some time interval the ocontrol law (13) does not determine a
solution. The time optimal control problem is called singular in
this case. If the switching functions equal zero at isolated times
only (13) determines a solution and the problenm is called
non-singular. For the moment we will only consider non-singular
time optimal control problems. In case of a non-singular time
optimal control problem we observe fronm (13) that almost
everywhere each control variable takes on an extreme value., This
type of control is called a bang-bang control.

The solution of the time-optimal control problem (6}-(9) 1is
determined by (6), (9), (11) and (13) and constitutes a two point
boundary value problem (TPBVP) where the boundary conditions are
given by (6b) and (9) and in addition we have the boundary
condition (Lewis, 1986)

H(tr) =0, {14]
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Since the system (6a) and the integrand of the cost criterion (8)
do not explicitly depend on time, the Hamiltonian (10) is not an
explicit function of time. So we have (Lewis, 1986)

H=o0 - [15]
and together with (14)
H(t) = 0 tst st [16]

The TPBVP (6), (92), (11) and (13) is very difficult to solve
numerically since except from (16) no information concerning
values of the costate is available., In addition we experienced
that the soclution is very sensitive to changes in the costate. The
usual approach is to search for bhang-bang controls which transfer
the system from the initial to the final state and to assume that
the one with the smallest transition time satisfies Pontryagin’s
Minimum Principle. We will demonstrate that dependent on the
solution this assumption may not be correct. In section 4 we will
present a numerical test to verify whether bang-bang solutions
satisfy Pontryagin’s Minimum Principle.

As an introduction to section 4 let us finally look at the time
optimal control problem from a different point of view. Given an
initial costate

Ay (17}

At,) o

which according to (16) must satisfy
H(t) =0, [18]

the system (6a), the adjoint system (11) and the control law (13),
when integrated from the initial conditions (6b) and (17),
generate time optimal solutions sgatisfying Pontryagin’s Minimum
Principle. The final state in this case depends on the initial
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costate (17) and the time at which the integration is stopped. So
given a fixed final state (9) the time optimal control problem may
be regarded as an initial value problem for the costate. Again
however, this initial value problem is very difficult to solve
numerically since except from (18) we have no information
concerning the initial costate, while in addition we experienced
the problem to be very =sensitive to changes in the initial
costate., Since furthermore the final time is unknown, during
integration we constantly have to check whether we come across the
fixed final state. In section 4 however we will demonstrate that
given a bang-bang control we may compute whether or not an initial
costate exists which generates this bang-bang control. If it
exists the solution satisfies Pontryagin’s Minimum Principle
otherwise it does not. When the initial costate exists we are able
to compute it and thereby compute the evolution of the costate and
the switching functions corresponding to the time optimal control
and state trajectory,

IV, A Numerical Test to Verify Whether Bang-bang
Solutions Satisfy Pontryagin’s Minimum Principle.

The state and costate equations for the time-optimal control
problem are given by (6a) and (11). Pontryagin’s Minimum Principle
states that a necessary condition for a time-optimal soclution is

u (t) = - a sgn (A" (t)B), t,st st [19]

In the sequel a time-optimal solution will denote a solution
satisfying Pontryagin’s Minimum Principle, 1.e. equation (19}.
Assume we have a bang-bang control

u (t) t,st st [(20]

which transfers the system from the initial to the final state,

i,e.

213



COMPUTATION OF TIME-CFTIMAL CONTROLS

[
L

x (t)) = x, [21a)

x (t) = x, _ [21b}

[
d

where x, is the state trajectory of the system (6a} generated by
the control (20). The question whether +this control 1is
time-optimal comes down to the question whether an initial costate
vector a(t ) exists which by (6a), (11} and (19) generates this
bang-bang control. Equation (19) demandes that at each switching
instant the corresponding switching function is equal to zero. We
will demonstrate that this condition can be transformed into p
computable linear relationships between the n components of the
initial costate vector, vwhere p is the number of switches,

The solution to the linear adjoint differential equation (11) is
given by

At) = &(t,t) A(c), (22]
where ¢ is the fundamental matrix associated with (11). Note that
since both x, and u, are known Q(t,to) can bhe computed. If the
i-th control variable switches from one extreme value to the other

at time t,, the corresponding switching function must be equal to
Zero. So we must have

[AT(t )B(t)], =0 . (23]

From (22) and {23) we must therefore have

AT(t) 2(t) =0 [24a]
where
E (t) = @T(ts,to)Bt(ts). {24b]

Egquation (24) constitutes a linear relationship between the n
compenents of the initial costate vector. With p switching times
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we obtain p linear relationships between the components of the
initial costate vector. According to equations (10) and (18), the
initial costate must also satisfy

AT(t) [£(x) + B(x)u(t)] = -1. [25]

Equation (24) , which holds at each switching instant and equation
{25) define a nonhomogeneous system of p+1 linear equations with n
unknowns. When p+1 = n, the system has a unigue solution, if these
p*1 equations are linearly independent. If p+1 > n, then at least
p+ti-n equations must be linearly dependent for the system to have
- a solution, otherwise the system has no solution. If p+1 < n, a
set of solutions exists,

The nonhomogeneous system of p+l1 equations constitutes necessary
conditions for the initial costate, If the system has no solution,
the kang-bang control is not time-optimal. If the system has one
or several solutions, we have to check if (19) is satisfied for
all t e Ito,tr]. This can be done by numerical integration of
{(6a), (11) and (19), given x{t)) and a(t }.

v. The Time-optimal Control Problem for a Two~link
Robotic Manipulator

v.I Introduction

In order to demonstrate our approach we will
investigate the industrial IBM 7535 B 04 robot, treated by Geering
et al. This is one of few papers, in which actual numerical
calculation of the time-optimal controls is performed. Since
Geering et al. also use Pontryagin’s Minimum Principle to
investigate the time-optimal control problem, this paper serves as
a reference for our approach., We will show that some solutions
presented in this publication to be time-optimal are not,
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V.11 Dynamic model of the IBM 7535 B 04 robot

The industrial IBM 7535 B 04 robot is sketched in
figure 1. This robot consists of two links, which move in a
horizontal ©plane. A third 1link which allows for vertical
translations is mounted at the end of the second link. To perform
various tasks a gripper which may hold a load during operations is
mounted at the end of the third link. The vertical motion is
completely decoupled from the horizontal motion of the first two
iinks and is not treated here. The dynamics of this robotic
manipulator as presented in Geering et al. are guite unaccessible
and do not allow for easy extension to include gravity and
friction terms. As we will demonstrate in appendix A, this rohot
can be fully described by the closed form dynamics of a two-link
robotic manipulator {Asada and Slotine 1986), The third link, the
gripper and the load are then considered as an integral part of
the second link., The numerical values for the parameters of the
IBM 7535 B 04 robot, gilven by Geering et al. can still be used
after appropriate transformation. We will now present the c¢losed
form dynamics of the two-link robotic manipulator and give the
actual values of the parameters. For a detailed description of the
matching of the closed form dynamics with the model and data
presented by Geering et al. we refer to appendix A.

Consider a common two-link robotic manipulator, which suffers from
viscous and Coulomb friction. This is a robot with a geometry as
sketched in figure 1 without a third link. The robot motion.may be
considered either in a horizontal or in a vertical plane. Let m
and 1 be the mass and the length of the first link and m, and 1,
the mass and the length of the second link.'The moments of inertia
about the centroids are given by I, and I,. The angular rotation
6, of the second link is measured relative to the first link. The
distances between the centroids of links and the joint axes are
denoted by 1c1 and lcz.

The closed form dynamics are given by (Asada and Slotine, 1986)
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T, =M +M6-hé-2n 66, + G +F [26a)
t 3=M12é1+H22é2_héf+Ga+Fz {26b)
where

M =ml1Z + I +m[1%+1° + 21,1 _cos(8,)] + I, [(27a]
M, =mllcos(e) + malga + 1, {27b)
M, = mzlzz + I, [27¢)
h = mzlllczsin(ea) [274]
G: = m11c1g cos(el) + n&g{lcacos(91+ 92) + licos(ei)} [27e]
Gé = nalcig c05(91+ 62) [27£)]
F = cisgn(él} +ve [279]
F, = c,sgn(é,) + Ve, - (27h}

The terms G, and G, account for the effect of gravity, while the
terms F and F, which are not considered by Asada and Slotine
represent both Coulomb and viscous friction.

If we consider the robot to move in a horizontal plane, we must
exclude gravity terms, because then this force is orthogonal to
the robot motion. If we consider the robot motion in a vertical
plane, the gravity terms (27e) and (27f) play a major role in the
dynamics.,

The values of the parameters of the IBM 7535 B 04 robot, computed
from the parameter values presented by Geering et al. are given
below.

1, = 0.4 m 1 =10,25n 1 5 = ¢.l161 m
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m 21 kg I+ m11c1 1.6 mkyg I, =0.273 w ko
¢, =0.05 Nm v, = 0,025 Nms™ ¢, = 0,15 Nm v,=0,005 Nms™

b1 = 25 Nm b2 = 9 Nm [28]
For the computation of these parameter values we refer to appendix
A.

V.III  Time-optimal solutions

The Hamiltonian (10) is affine in the controls u.
Pontryagin’s Minimum Principle then yields that the controls are
of bang-bang type or may be singular. In case we have a bang-bang
control that transfers the manipulator from the initial state to
the final state, we are able to check whether or not this
" bang-bang solution satisfies Pontryagin’s Minimum Principle. 1In
order to find such a bang-bang control, we assume an initial
control vector and we assume that the number of switching times
equals p. Then we use a parameter optimization method to optimize
the p switching times and the final time, using a penalty for
deviations from the final state to force the Ffinal state to be
reached.

Geering et al. treat several types of solutions for the special
case in which the links are stretched in both the initial and
final configuration. We find exactly the same bang-bang solutions,
proving that we concern ourselves with exactly the same robot
dynamics. To demonstrate this we give our computations of some of
the robot motions presented by Geering et al. Furthermore we will
check whether or not the computed solutions satisfy Pontryagin’s
Minimum Principle. Some solutions presented by Geering et al. as
time-optimal turn out to be not time-optimal.

In section 4 we already noted that for a bang-bang solution with p
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switching times to satisfy Pontryagin’s Minimum Principle we have
to consider a nonhomogeneous system of p+1 linear equations with n
unknowns. Therefore it seems natural to look at first for a
bang-bang solution with n-1 switching times, for then we have to
sclve a system of n linear equations with n unknowns, n being 4 in
case of a two-link manipulator. Geering et al. also find
time-optimal solutions with 3 switching times, designated as type
Ao'

The actuation torque u, of the second link acts on the first link
too, If the sign of u, is opposite to the sign of u, at the
beginning of the robot mnotion, u, inoreases the accelerating
effect of u . It seems natural for the initial control vector to
have the first component positive and the second component
negative. We will however try other initial control vectors as
well,

For a robot motion with initial state

x,={0o o o o] [29a)
and final state

Xx,=[0975 0 0 017, [29b]

assuming three switch times, parameter optimization, performed by
the routine BCPOL from the IMSL library, ylelds the bang-bang
control shown figure 3 which transfers the system from the initial
to the final state as shown in figure 2. Now we have to check
whether this bang-bang control satisfies Pontryagin’s Minimum
Principle. This is done by calculating an initial costate
following the lines of section 4. Then we numerically integrate
the system (6a), (11) and (19), given x(t)) and A(t)) from the
initial time to the final time to check whether (19) is satisfiead
for all t e [to’tr]‘

For the robot motion (29) the bang-bang solution satisfies
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Pontryagin’s Minimum Principle as can be seen from figure 3, In
this figure both the optimized bang-bang control and the bang-bang
control generated by the switching functions are sketched, which
are identical in this case.

Next we present in figure 4 our results for a robot motion with
initial state

x,=[0 0 0o 07" [30a)]

and final state

x, =[5 0 o o], [30b]
the contrel again having three switches. Obviously the computed
control and the control generated by the switching function do not
match, so this control is not time optimal. The initial costate,
which constitutes the unigue solution to the necessary conditions
{24} and (25) does not yield the desired bang-bang control.

For el(tﬂ > 0,98 bang-bang controls with three switches do not
satisfy Pontryagin’s Minimum Principle. Next we assume four
switching times in order to try and find time-optimal controls
which transfer the robot to a configuration with ez(tﬁ > 0,98,
Geering et al, find this type of solution and denote it as type
A . We will now demonstrate that this bang-bang control with two
switches for each torque does not satisfy Pontryaginfe Minimum
Principle, i.e. these solutions are not time-optimal!

The results for a robot motion with the control switching four
times given the initial state

x,=[0 0 0 0] [31a]
and the final state

x, =[1.0 0 0 o] [31b}
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are shown in figure 5. An initial costate is calculated from the
first three switching times, which determine a unique solution for
the initial costate, Integrating the system yields that the
calculated bang-bang solution does not satisfy Pontryagin’s
Minimum Principle, as can be seen from Figure 5b.

Next we compute a time-optimal bang-bang control with Ffour
switching times. In section 3 we noted that in thisg case there
must be a linear dependency in the nonhomogeneous system which
determines the initial costate. We consider a solution with the
second link swinging through, u switching three times and u,
once. Geering et al. denote this type of solution as B . The
results are depicted in figure 6 for the robot motion from the
initial state

x,=[0 0 0 0] (32a]

to the final state
x,=[07 -21 0 01 [32b)

As can be seen from figufe 7, although the sclution has more than
n-1 switching times, the computed bang-bang control with four
switching times satisfies Pontryvagin‘s Minimum Principle! 1In
general the probability that a solution with more than n-1
switching times satisfies Pontryagin’s Minimum Principle is almost
zero, since the probability of the necessary conditions (24), (25)
for the initial costate being linearly dependent is almost zero.
Therefore there must be an explanation why we find the complete
class of time-optimal control problems of type B, having
time-optimal solutions with n switching times., This can be
explained by the symmetry of the switching functions, which causes
linear dependence in the necessary conditions (24), (25) for the
initial costate. The symmetry of the switching functions for
time-optimal control problems of type B, is explicitly contained
in the robot dynamics. For detailed analysis we refer to appendix
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B. Once however we introduce friction into the robot dynamics,
this symmetry immediately vanishes. We will show this by
evaluating the same robot motion of type B, as above, now only
with addition of small Coulomb and viscous friction terms as
described in equations (27g) and (27h) with parameter values given
by eguation (28). The results are presented in figure 8. In this
case the switching functions are only nearly symmetric, the
symmetry, which causes the linear dependence in the necessary
conditions (24), (25) for the initial costate, therefore is lost
and the solution does not satisfy Pontryagin’s Minimum Principle,
Also if we consider the robot motion in a wvertical plane the
influence of gravity destroys the symmetry. We want to make the
point here that the solutions of type B,, when we disregard
-friction and gravity, constitute a very special class of
time-optimal control problems for which a solution with more than
n-1 switches satisfies Pontryagin’s Minimum Principle. In other
words, if we consider an arbitrary initial and f£final state, then
the probability that the time-optimal control consists of a
‘bang-bang control with more than n-1 switches is almost to zero.

Therefore to solve the time-optimal control problem for a given
initial and final state, we search for a bang-bang contrel with no
more than n-1 switches which satisfies Pontryagin’s Minimum
Principle, If such a bang-bang control can not be found the
time-optimal control problem is very likely singular.

The procedure described above can be applied to robot motions in
vertical planes as well. Although we computed several, we will not
actually include examples in which gravity is contained.

VIi. Sub-Time-Optimal Solutions computed by Control
Parameterization

From section 5 we observe that the time-optimal control
problem is non-singular only for a limited class of initial and
final states. For singular problems Pontryagin‘’s Minimum Principle
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deoea not yield an optimal control. In this section we will
demonstrate that the method of contrel parameterization can be
usged to compute sub-optimal controls. The control parameterization
will be based on the assumption that the control is of piecewise
constant nature which is a realistic assumption when using a
digital controller. We will ghow that for a non-singular
time-optimal control problem solutions computed by means of
control parameterization transfer the manipulator in near minimum
time from the initial to the final state., Since for singular
time-optimal control problems the optimum is very flat solutions
found by control parameterization are expected to be near
tine-optimal as well.

Consider the system {6) and the cost functional (8). The control
parameterization is given by

w(t) =u(t), tel(t,t ), i=1,..,r k=0,1,..,N [33]

k+i
where, although not necessary, we assunme t  are equidistant time
instants and ty; = t.. The controls are assumed to be bounded

Eul(tk)i s A4 i=1,,.,,r k=0,1,..,N. [34)

The control parameterization (33) and (34) constitutes a bounded
plecewise constant control. The time-optimal control problem now
is to find a control u(t) satisfying {(33) and (34) which transfers
the manipulator from the initial to the final state, such that the
cost functional (8} is minimized, As can be cbserved from (33) the
control variable u, is a function of N+1 parameters, the
parameters being the amplitudes of the control wvariable., By a
parameter optimization method, 1l.e. the routine BCPOL from the
IMSL library, the amplitudes are varied in order to find a control
which drives the system from the initial to the final state, using
a penalty for deviations from the final state in order to force
the final state to be reached., A final time is assumed, and when a
solution is found the final time is decreased otherwise it is
increased and the process is repeated untill changes in the final
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time become insignificant.

For non-singular time-optimal control problems we are able to
compute time-optimal solutions. Therefore the minimum transition
time is known. We will demonstrate that the method of control
parameterization yields near time optimal controls which differ
significantly from the time-optimal bang-bang controls
demonstrating that the cost functional has a weak minimum.

For the robot motion with initial and final state given by (29) we
computed a time-optimal selution with a minimum transition time of
1.085 s, shown in figures 2 and 3. We applied control
parameterization using 20 equidistant time-intervals. We find a
piecewise constant control which transfers the robot from the
initial to the final state in 1,095 g, as shown in figures 9 and
10.

Next we apply control parameterization to the singular problem
presented in figure 4, i.e. a robot motion with initial and final
‘state given by (30}. The results are depicted in figures 11 and
12, We observe that the final time found by c¢ontrol
parameterization is egqual to 1,225 s. Previously we obtained a
bang-bang sclution with 3 switches and a final time of 1.28 s,
Based type A of Geering et al. we computed a bang-bang control
with 4 switches yielding a final time of 1.235 s. Control
parameterization obviously gives the smallest transition time for
this problem.

Summarizing the method of control parameterization seems to be
well suited to solve both non-singular and singular problems.

VII. Conclusions

For nonlinear systems, linear in the control, we presented a
new numerical test which determines whether bang-bang solutions
satisfy Pontryagin’s Minimum Principle. The test reveals the new
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important fact that if we consider such a system with dimension n,
the probability that a certain bang-bang solution, with more than
n-1 switches, satisfies Pontryagin’s Minimum Principle, is almost
zero., Given an arbitrary initial and final state we therefore
search for bang~bang solutions with up to n-1 switches, which
transfer the system from the initial to the final state. The
search constitutes a parameter optimization procedure where the
parameters are the switch times and the final time. A penalty for
deviations from the final state is used to force the final state
to be reached. The numerical test is applied to verify whether or
not these solutions satisfy Pontryagin’s Minimum Principie. If no
solutions with up to n-1 switches can be found transferring the
system from the initial to the final state while satisfying
Pontryagin’s Minimum Principle, the problem is very 1likely
singular. In that case we use an optimization procedure, based on
control parameterization, to compute sub-optimal solutions.

Our method can be applied to rigld robotic manipulators, where
both friction and the effect of gravity may be included in the
robot dynamics. We computed time-optimal solutions for an IBM 7535
B 04 robot, which can be modeled as a two-link manipulater. We
demonstrated +that for this robot some numerical solutions
mentioned 1in the 1literature to satisfy Pontryagin‘s Minimum
Principle, do not. Furthermore we demonstrated that for
non-singular problems the method based on control parameterization
generates sub-optimal solutions for this robot, which are very
close to the optimum. Since for singular problems the minimum is
very flat, in these cases we expect the method based on control
parameterization to generate sub-optimal solutions that are very
close to the optimum as well. Summarizing the method of control
parameterization seems to be very well suited to solve general
time-optimal control problems for rigid manipulators. The method
explicitly assumes the control to be piecewise constant, which it
a realistic assumption, since robots are controlled by digital
computers. Bounds on the individual link velocities, which have to
be considered in practice as well, are also easily included in the
problem. The solutions are in open-locop form but, when
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conservative bounds on the control variables are used, can be
implemented in conjunction with a perturbation contreller, the
result yielding a time-optimal feedback controller (Van
Willigenburg 19%0c).

We have not gone into detail with respect to the ocomputations
involved in the numerical test to verify whether bang-bany
solutions =satisfy Pontryagin’s Minimum Principle. In a future
paper we plan to treat the numerical computation of the test,
together with the influence of numerical errors, in detail. For
instance, the numerical determination whether or not a
nonhomogeneous set of equations is linearly dependent presents a
problem. Furthermore the errorse introduced by numerical
.integration, which plays a crucial role in the computation of the
numnerical test, have to be considered. Questions concerning
numerical errors are related to questions concerning the
sub-optimality of solutions. Questions concerning sub-ocptimality
are interesting since they may answer the question to what extend
‘solutions generated by control parameterization are optimal.
Furthermore they are of interest since the application of
bang-bang controls in practice increases wear. One generally
prefers a more smooth contrel. The guestion concerning the
sub-optimality of solutions will also be a subject of future
research.
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Appendix A

We can easily include the effects of the third link, the gripper
and the 1load in the closed form dynamics of the two-link
manipulator by integrating the third 1link, the gripper and the
lead in the second link. Since the third 1link moves perpendicular
to the second link the centroid of the third link, the gripper and
the load may be located at the end of the second link. Assume the
third link, the gripper and the load have a total mass m, and a
moment of inertia I,. The second link as a whole will have a mass
m,, a centroid léa and a moment of inertia I;, which can all be
calculated from the masses and moments of inertia of the second
link and the third link together with the gripper and the locad by
application of Steiner’s Translation Theorem.

Application of Steiner’s Theorem yields

=
m,o=m +m, (A1)
1' _ nﬁlca + m313 [A2)
- !
[sr] n% + m3
m,my 2
I =Iz+13+ m +m(12"162) [A3]
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Equations [26] and [27] still hold in case of a third link with a
gripper and a load at the end of the second link, but must be
=1’ and I_= I’,

cz 2 2

transformed by setting m_ = m; PR o8

2 2

Geering et al. use the moment of inertia & with respect to the
joint axes, while I in our equations denotes the moment of inertia
about the centrold of the link. These descriptions can be related
using Steiner’s Theorem. For example we have for the first link

- 2
g, =I +ml> [A4]

Ae can be seen in eguations [26] and [27], the parameter m does
not occur in the closed form dynamics in case we consider the
robot motion in a horizontal plane if we use [A4]. If however we
consider the robot motion in a vertical plane, m should be known

since it occurs in the gravity term.

Geering et al. locate the center of gravity of the second link in
the middle of the second link, so

1o, = 51, [A5)

The above yields the following numerical values for the IBM 7535 B
04 yobot in terms of the closed form dynamics of a two-link robot.

’
.11 = 0.4 m 12=0.25m lca=0'161m

’
m! = 21 kg&, = 1.6 kg I, = 0.273 kg

1

c, =0.05 Nm v, = 0.025 Nms' ¢, = 0.15 Nm v ,=0.005 Nms™!

b1 = 25 Nm b2 = 9 Nm, (A6}

Friction will play only a minor role in the dynamics, as can be
seen from the values in (A6). In modern robots in which
significant gearing is typical, friction forces can be actually
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guite large, up to 25% of the torque required to move the
manipulator (Craig, 1986). )

Appendix B

In this appendix we demonstrate that the symmetry and
anti-symmetry in figures {6) and (7) is explicitly contained in
the robot dynamics for the robot motion of type BB' where gravity
and friction terms are not taken into account.

From the closed form dynamics (26) we observe
8, = fl(ea,él,éz,r) [B1]
8, = fa(ez,é‘,éz,'c). [B2)

By inspection of the closed form dynamics we have

fl(—n+92,§1,éa,1:) = - fi(-rr-ez,él,éa,—t} [B3]
fz(—n+62!é1!é2!t) = - fz(—n-ezléliézi_r)' [(B4]
Starting at a configuration where e, = - eguations (B1)-(B4)

imply that the behavior of él and éz forward in time is equal to
the behavior backward in time, if the controls have opposite sign.
This explains the symmetry of é1 and éz and the anti-symmetry of
8, and 9, in figures (6) and (7).

From the costate equation (11) using (Bl) and (B2) we obtain the
following equations for the costate
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i,= o0
St &f
- i2= : Azt : A
592 892
§f &f
SR, = A b g+ A
36, 38, [B3)
- =2a + Efll + ifzh
4 2 '3 - 4
562 692

The symmetry of &, and éz and the anti-symmetry of f, f  and 8,
with respect to ¢= -m imply the symmetry of A  and 1, and the
anti-symmetry of 13 and A4, assumning Aa and A4 are egual to zero
when 6= -n. When 6= -m both control variables switch, which
implies that both switching functions must be equal to zero. Given
{4), (10) and (13) this implies that

-1
(A, 2] 8 =0 [B6]

Since M™! is a positive definite matrix this implies that both A=
0 and A=0 when 8, = -m.

Finally from the closed form dynamics (26) we observe that
M(-n+e,) = M(-n-~6,) [B7]

So M ig symmetric with respect to 8, = -1 and therefore M is
also. The symmetry of M! and the anti-symmetry of A, and A, imply
that the switching functions are anti-symmetric. Given this
anti-symmetry a switching point on one side of e, = -n
automatically implies a switching point on the other side.

Summarizing, the linear dependency of the non-homogeneous systen

of p+1 equations for the initial costate is explicitly contained
in the robot dynamics,
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Figure f. Geometry of the IBM 7535 B 04 robot
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.Figure 2, Time-optimal stale trajectory for a robot

motion  with

1.2
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inftial and final confliguration; Uiitrl = 0.975 rad, Dz(t‘) = 0 rad.
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Figure 3. Tlne-oplimal contrel for the robot motion in fig.2; u switches al

0.5423 s, u, switches at 0.088 s and 0.588 s and the {inal time

t,- = 1085 s The bang-bang control and the control generated by

the swilching Cunctions match, The switching funclions are

scaled as indicated.

233



State [rod, rad/s]

—\-""‘-—-_&__ w
0 .
x2
—5p x4 -
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time [s
{s] ()
2ok UT(lamibda) §
u2{bb),u2(lambda) /
P il S
) I e
-20 u1(bb) .
0 0.2 0.4 0.6 0.8 1 1.2 1.4
(b)
Time [a]

Figure 4. (a) State trajeclory for a robot motion with stretched initial and
final configuration; Glur) = L5 rad, Bz(tr) = 0 rad and tr=1.28 5.
(b} The bang-bang control with 3 switches and the control generated
Ly the switching functions do not match. The first switching func-

tion is scaled by 140.8 and the second switching functlon by 802.6 .
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Control [Nm]
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Figure 5. (a) State trajectory for a robot motion with stretched initial and
final configuration; el“f) = L0 rad, thtf) = 0 rad and tf=1.09 5.
(b} The bang-bang control with 4 swltches and the control generated

by the switching functions do not match. The first switching func-

tion is scaled by 225.7 and the second switching function by 675.9 .
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Figure 6. Time-optimal slale trajectory for a robol motion with stretched
initial and final configuration, the second link swinging hrough;
0|“r) = 0.76 rad, Oz“r] = -2 rad and t‘ = 0975 5 .
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Figure 7. Time-eptimal control- for the robot motion in fig.6; u, switches at

i3 &, 0.4873 5 and 0784 =, u, swilches at 0.4873 s and the final
time "r = 3.975 5. The bang-bang control with 4 switches and the
controf generated by the switching functions match. The swilching

lfunctlons are scaled as fndicated.
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Figure 8. {a) State trajectory lor a robot motion with stretched initial and
final configuration with friction, the second link swinging througly
ex(tr) = 0.76 rad, Gz(tr) = -2n rad and tru 0.976 s.
(b} The bang-bang control with 4 switches and the control generated
by the switching functions do not match. The first switching func-

tion ls scaled by 2716 and the sccond switching function by 17654
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Figure 10, Parametrized control for the robot motlon In flg.9; the

number of time intervals is 20 and the Tinal time lr = L095 s.
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Figure 12. Parametrized control for the robot motion in
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number of time intervals is 20 and the final time lr = 1225 s.
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L.G. VAN WILLIGENBURG

DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS AFPPLIED TO
RIGID MANIPULATORS

Abstract

Based on the recently developed numerical solution of the
sampled-data (digital) LG problem for linear time-varying systems
we will treat the design and computation of implementable digital
compensators for continuous-time nonlinear uncertain systems. A
compensator is used to control the system about a so called ideal
input-state response, The ideal input-state response is computed
off-line through optimization and represents the desired system
behavior. In this paper both the compensator design and the
optimization are characterized by the fact that the
continuous-time system behavior and the digital nature of the
controller are explicitly considered in both problems. Usual
controller designs neglect the inter-sample behavior or the
digital nature of the controller. The digital controllers that
result from our design procedure need only a very small number of
on-line computations to be performed. As an example we compute and
simulate digital controliers for a robotic manipulator.

1. Introduction

Industrial processes very often constitute continuous-time
systems. The automatic control of industrial processes is
generally performed by digital computers. In these cases the
automatic control system is a digital control system that can be
schematically represented by figure 1. The continuous-time systen
has a sampler at the output and a sampler and zerc order hold
circuit at the input.
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Figure 1: Digital Control System

The design of a digital controller for a continuous-time system is
often referred to as a digital control problem. The term digital
throughout this paper will refer to the facts that

a) We have sampled measurements since a computer cannot deal
with continuous-time measurements

b) The control is of piecewise constant nature (a stair case
function), since a sampler and zero order hold circuit
connect the computer to the input of the system

c) We consider the continuous-time behavior of the systemn.

Although these seem all very straightforward considerations, much
to surprise, very often at least one of these considerations is
not met in the design of digital controllers for continuous-time
systems. Very often the design only considers the system behavior
at the sampling instants, completely disregarding the inter-sample
behavior (Ackerman 1985, Astrom and Wittenmark 1984, Franklin and
Powell 1980). So in that case consideration c¢) is not met. In
other cases continuous-time contrel algorithms are designed, which
then somehow have to be approximated by a digital controller
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{(Athans 1971). In these cases both consideration a) and b) are not
met. In both cases there is a demand for a "small" sampling time,
in the former case to prevent undesirable inter-sample behavior,
in the latter case to properly approximate the continuous-time
algorithm. This demand, for instance in the case of robot control
where the computational burden on the computer is high, results in
computational difficulties., Even if the sampling time is chosen to
be "small" the digital controllers will only constitute
approximate solutions.

Over the years only a few publications have appeared which
consider digital control prohlems in the proper context just
described (Levis, Schlueter and Athans 1971, Nour Eldin 1971,
'Halyo and Caglayan 1976, De Koning 1980,1984, Stengel 1%86, Van
Willigenburg and De Koning 1990 a,b). From these publications it
is apparent that it hardly takes extra effort to solve digital
control problems in the proper context.

Since most industrial processes are nonlinear in this paper we
will deal with the design of digital controllers for
continuous~time nonlinear uncertain systems where the uncertainty
consists of additive white system and measurement noise. Based on
the solution to the digital LQG problem (Van Willigenburg and De
Koning 1990b} and a numerical procedure to compute it (Van
Willigenburg 199%0a) we will treat the design and computation of a
digital compensator which is used to control a nonlinear system
about an off-line determined so called ideal input-state response.
This response defines the desired system behavior. The computation
of the ideal input~state response will also be treated. The design
procedure may be compared to the one presented by Athans (1971).
He considered the design of continuous-time controllers where we
consider the design of implementable digital controllers, The
digital contrellers that result are characterized by the fact that
the number cof on-line computations to be performed is very small.

As an example we will present the design and simulation of digital
controllers for the IBM 7535 B 04 robot, which constitutes a
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highly nonlinear system. Using our approach we will demonstrate
that proper results are obtained with controllers that have a
sampling time of 70mS, which is generally considered too large for
robot control (Cralg 1986).

2, Continuous-time optimal control of nonlinear  uncertain

systens

Athans (1971) has excellently described the use of the
solution to the continuous-time IQG problem to control
continuous-time nonlinear uncertain systems about an ideal
input-state reaponse, that defines the desired system behavior.
The ideal input-state response will often be referred to as the
trajectory. The uncertainty is modeled by additive white gaussian
system and measurement noise and the behavior is considered over a
finite time interval [ty tel. The dynamics of the continuous-time
nonlinear uncertain system are therefore given by

x(t)

F(x(t),u(t),t) + £(t),  te(t,t,] [1a]

y{t) glx(t},u(t),t) + e(t), teft ,t.]) (1b]
where £ i1s a nonlinear function and also g may be a nonlinear
function. ¢ and 9 represent the additive white system and
measurement noise. Based on the 1linearized dynamics about the
trajectory, which approximately describe the dynamic behavior of
small deviations from the trajectory, the solution of the
continuous-time IQG problem, which constitutes a compensator, is
used to control! deviations from the trajectory to zero. The
continuous time control system is schematically represented in
figure 2.
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Figure 2: Continuous-time control system
with a compensator
based on linearized dynamics

Athans divides the controllier design procedure into five parts,

each part involving several steps,

Part A:;

Step 1:

Step 2:

Step 3:

Deterministic Hodeling.
Determination of the deterministic part of the nonlinear

system equation {la), i.e. r{x(t),u(t),t).

Determination of the deterministic part of the output
eguation (1b), i.e. g(x(t),u(t),t).

Based on the deterministic version of the model (1), i.e.
X = F(x(t),u(t),t) [2a)
y(t) = g{x(t)u(t),t) [2b]

determine a s0 called ideal input-state~output
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response,

u {t): ideal input, [3a}
0

x,(t): ideal state response, [3b]
yb(t): ideal output response. [3¢]

The ideal input-state response reflects how we actually want the
system to behave. uo(t) and xb(t) are related through eqguation
(2a) and constitute the trajectory about which we want to contrel
the system. The ideal input-state response, i.e. the trajectory,
may be the outcome of a deterministic optimization problem
constrained by the nonlinear dynamics (2a). The ideal output
response via ({2b) directly follows from the ideal state response,

Part B: Stochastic Modeling.

Step 4: Modeling of uncertainty in the initial state of the
system (1).

Selection of the mean f(to}.
Selection of the covariance

T, = cov[x(t )ix(t)]. (4]
Step 5: Modeling of uncertainty in the system (;).

Selection of the covariance

E(t)3(t-t) = cov[{(t)§(T)] {5}

where £{t) is the additive white system noise in (la).
Step 6: Modeling of measurement uncertainty.

Selection of the covariance

@(t)d(t-t) = cov[o(t);0(T)] [6]
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Part C:

Step 7:

Step 8:

where @(t)} 1is the additive white measurement noise in
(1b).

Linearization modeling,

Establishing of the linearized model

It

8x(t) = A& (t) 8x(t) + B (t) su(t), (7a}

sy(t) = € (t) 8x(t), [7b]

about the ideal input-state response u (L}, x (i}, below
referred to by o, 1.e,

af af ag
A (t) = . B (t) = . C (L) = ' (7c]

° ax(t)le ° su(t)lo ax(t)|o

which approximately describes the dynamic behavior of
the perturbation variables

su(t) = u{t) - uo(t), {8a}
sx(t) = x{(t) - %, (t), {8b}
sy(t) = y(t) - y (t), {8c]

as long as they are small.

With due consideration of 25, 2(t} and @{t) and depending
on the degree of nonlinearity of the system (1) select
the cost weighting matrices Q,(t), R (t) and F, of the

cost criterion

t
£
J(u) = 8x"(tp)F 8x(ty) +J ax'(t)g (t)sx(t) +

to
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Part D:

Step 9:

Step 10:

Part E:

Step 11:

Step 12:

Part F:

su”(t)R (t)su(t) dt. 91

which is used to keep the perturbation variables, i.e.
deviations from the trajectory, small.

Control problem computation,
Given the matrices established in steps 7 and 8, solve
the 1linear regulator problem [8], {91, 1i.e. solve
backward in time the control Ricatti equation,

= pu— - T —
K (t) = -K (t)A (t) - 4, (LYK (t) - Qy(E) +

-1 T =
K (£)B,(6)E; (£)B, (E)K,(£), Ky(tg) = Foe [10]

From the solution K (t}, determine the feedback gain
matrix,

! T
G, (t) = Ry (t)B (IK (T). [11]
Filtering problem computation.

Given the matrices established in steps 4,5 and 6 seclve
forward in time the filter Ricatti equation,

B (t) = A (£)Z () + x, (L) A (L) + B(t) -
zo(t)co(t)e;‘(t)cz(t)zo(t), £ (t) = % [12)

From the solution Zo(t), determine the filter gain

matrix,

H (t) = zo(t)cg(c)e"(t). {13]

Construction of the linearized dynamic compensator.
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Step 13: The linearized dynamic compensator is given by

sx(t) = [A,(t} - B (t)C (t) - H (t)C (t)) X (t)
+H (t)8y(t), 8%(t) = ;?o—xo(to), [14a]
Su(t) = -G (t) 8%(t) (14b}

where 8%(t) 4is the minimum variance estimate of
dx(t), generated by the filter.

Since all matrices appearing in the compensator equation {14) can
be computed off-line we observe that the number of on-line
computations to be performed is very small which is a very
attractive property. Athans stresses the importance of part A and
B and step 8 of part ¢ since these all involve modaling issues,
where the ability of the engineer is crucial, since no recipes
exist to translate the "real world" intoc a mathematical model. The
other steps Athans calls mechanical since a varlety of
computational technigues to solve the Ricatti differential
equation were already available then.

Concerning the implementation Athans suggest the implementation of
an approximation of (14) on a digital computer. The exact
implementation of the continuous-time control algorithm {14) on a
digital computer is impossible since the digital nature prevents
the ability to deal with continuous-time measurements as well as
it prevents the generation of a control which is adjusted
continuously in time.

3. Digital (sampled-data) optimal control of nonlinear uncertain

systems

Since the compensator (14) cannot be implemented in a digital
computer approximations have to be made, or we have to incorporate
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the digital nature of the computer into the control problem.
Consider the general digital control system depicted in figure 1
with a sampler at the output and a sampler and zero order hold at
the input of the continuous-time system. The sampling process is
characterized by

a) sampling instants t0<t1<t2<...<t“

b} sampling periods T =t .-t k=0,1,2,..,N-1
c) sampling intervals (¢, t), k=0,1,2,..,N-1
The tasks to be performed by the computer during the sampling
interval [t,,,»t,) are schematically represented by figure 3., At
tinme tR the computer must adiust the control u(tk) and observe the
output y(t ). Within ft,,,,t,) the next control u(t . ) must be
computed.

Tk

A
Y

X Lkt

/‘( \\ Computation . /4

ulty) y{t) Ut}

Figure 3: Task sequence of the computer

Obszerve that the sampling instants are not necessarily
equidistant, Because of the sampler and the zero order hold at the
input of the continuous-time system the continuous-time control is
now of the following form

u(t) = u(t), te{t,t ), k=0,1,2,..,N-1 (15]

k+i

The continuous-time control {15) is called a piecewise constant
control and is uniquely determined by the finite sequence

u(t), k=0,1,2,..,N~1 [16]
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Because of the sampler at the output we now obtain a finite
discrete-time sequence of measurements given by

Yk = Y(t’k) k=0,1,2,..,N-1 [17]

Summarizing instead of continuous-time measurements we now have a
finite discrete-time sequence of measurements (17) and instead of
an unconstrained continuous-time control we now have a piecewise
constant control (15). Finally we assume the final sampling
instant to satisfy

t =t : [(18)
where tf is given by (1).

The plecewise conatant nature of the control restricts the choice
of the ideal input u (t) determined in step 3. When considered
over the finite time interval [t tels unconstrained
continuous-time controls constitute an infinite dimensional space,
while piecewise constant controls constitute a finite dimensional
space, since they are uniguely determined by the finite sequence
(16) .

Consider the ideal input-state response in step 3 to be the
outcome of an optimization problem. This problem is of the
following general form (Lewis 1986). Given the deterministic
initial state

x{t,) = x, (19]

of the deterministic system (2) minimize the integral oriterion

tf

J(x,u) = ¥(x(t)},t ) +J L(x,u, t)dt [20]

o
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constrained by the dynamics (2) and some additional state and
control constraints,

x(t) € X, te[t,t,] [21a}

ui{t) € U, te[to,t {21b}

£]
Note that any admissible control, i.e. a control satisfying (21b)
via (2) and (192) unigquely determines the value of the integral
criterion (20). So the optimization problem constitutes an optimal
control problem, i.e. the problem of finding a control satisfying
(21b) which minimizes (20} such that (2la) is satisfied. If the
control constraints (21b) limit the controls teo belong to a finite
dimensional space, each control is uniguely determined by a finite
sequence., An example is the piecewise constant constrained (15) on
the control, each piecewise constant control being uniquely
determined by the finite sequence (16). In these cases the optimal
control problem may be regarded as the problem of minimizing the
generally nonlinear function (20) of a finite sequence, i.e. the
sequence (16) in case of a piecewise constant constrained on the
control. Summarizing in these cases the optimal control problem
may be regarded as the constrained minimization of a nonlinear
function of a finite number of variables (Goh and Teo 1988), This
problem is generally much more easy to solve than the original
one. The nonlinear function value can be computed by numerical
integration of equation (2a) and (20) given the control (15). In
other words, to account for the piecewise constant constrained on
the control simplifies the determination of the ideal input-state
response  through optimization. Very often  however, the
optimization 1s performed without considering the piecewise
congtant constrained on uo(t)l

Obviously the fact that we now have a finite discrete-time
sequence of measurements and a piecewise constant constraint on
the control also affects the compensator (14). We now obtain a
digital control system schematically represented by figure 4.
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Figure 4: Digital control system
with a digital compensater
based on linearized dynamics

We now have to solve a different IHG problem, called the
sampled-data IQG problem (Halyo and Caglayan 1976) or the digital
1OG problem (Van Willigenburg and De Koning 1990b). Halyo and
Caglayan only partially solved the sampled-data LQG prbblem since
they did not present expressions for the minimum cost of the
problem. Expressions for the minimum cost, explicit in the systenm
and criterion matrices, were presented by Van Willigenburg and De
Koning, who solved both the digital regulator and tracking problem
completely. Both publications however were not concerned with the
numerical computation of the solution. The numerical computation
is not straightforward since 1t for instance involves the
computation and integration of expressions involving the
state-transition matrix of time-varying 1linear systems. These
problems were solved by Van Willigenburg (1990a) who presented a
nunerical solution to the digital LQG problem.

If we incorporate the digital nature of the control system into
the control problem, we have to replace the solution of the
continuous-time 1IQG problem by the sclution of the digital
{sampled-data) IQG problem. Considering the design procedure
presented in the previous paragraph only Part D,E and F, i.e. oniy
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the mechanical part of the design changes. So the modeling issues,
where the ability of the engineer is crucial, are not at all
affected! Although the modeling issues are unchanged we do have to
reconsider step 3, and as a result the mechanical atep 7, since
step 3 is affected by the piecewise constant constraint on the
control. Still using the same models and reconsidering step 3, and
as a result step 7, by replacing the numerical toocls to compute
the solution to the continucus-time IQG problem by tools to
compute the solution to the digital IQG problem (Van Willigenburg
19%0a) we design a truly implementable digital controller. The new
versions of part D,E and F of the design procedure are given below

Part D: Control problem computation,

Step 9: Given the matrices established in steps 7 and 8, solve
the digital regulator problem associated with ([8], [9],
and the digital control system in figure 1, i.e. solve
the discrete-time control Ricatti equation,

= , T ,_ T ] =
S, =(2,-T G)'S,  (3,-T G)+G R G+2,, 5=F. [22]

k+t ¥ k k

where the index k refers to values at the sampling
instant t . The matrices in equation (22) are given by

-1, T

¥, =4 - T[R'H, (23a}
QJ =0 - MR_IMT [23b
kK "x Kk x' ]
_ 1T 4
Gf_(rksk+1rk+Rk) UL Y (23¢c]
where
t
Q = f kel gT(t,t) Q(t) B(t,t) dt [234)
k * Tk 0 * Tk 4
t
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Step 10:

Part E:

Step 11:

t
M, = J kel gT(e,t) 0 (t) T(t,t,) dt, (23e]
tk
tk+i T
R = [ TR (1) + THE £ Qu(0) T(t,t)) dt, [23f]
t
k
I =T, ..t [239]
in which
t
r(t,t,) =[ 8(t,s) B (s) ds, {23h]
tk
B = 8(t, ., t), [231i)

% being the state transition matrix of the linearized
system (7a).
The feedback gain matrices are given by (23cC) so

_ -1,T ’ . _
¢=(rs,, T, +R)'T,S 8, k=0,1,2,..,N-1 (24)

Estimator problem computation.

¢iven the matrices established in steps 4,5 and 6 solve
forward in time the discrete-time predictor Ricatti
equation,

— _ _ T T -
Pk+1 = (@k 1‘Ik('."k)1:’k(*i>k Hka) +erkH.k+uk' P, zp(to) [25]

where again the index k refers to the values at the
sampling instants t and

_ T T -1
H = P C, (CPC*6) [26a}
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and finally

¢, = Cb(tk)' i [26b]
Step 12: The Kalman one step ahead predictor gain matrices are
given by (26a) so

. T T -1
H = &PC (CPC+0)". {271

Part F: Construction of the linearized dynamic compensator.
Step 13: The linearized dynamic compensator is given by
sﬁ(tm)—-—mk—ykck}a;?(tk) +H 3y (t, }+T, 8u(t,),
6:?0=x(t0)—§;, [(28a]
su(t ) = —Gkai(tk) {28b]

where a&(tk) is the minimum variance estimate of &x(tL,),
generated by the one step ahead predictor.

part F from the continuous-time Kalman Filter now turns into the
discrete-time Kalman one step ahead predictor (Van Willigenburg
and De Koning 1990b), which is very well known. Part D from the
continuous-time linear optimal regulator turns into the digital
optimal regulator (Van Willigenburg and De Koning 1990b) or
sampled-data optimal regulator (Halyo and cCaglayan 1976). This
regulator problem considers the mininization of a continuous-time
quadratic criterion of the form (9) by means of a piecewise
constant control given complete state information at the sampling
instants. Since this problem is of vital importance in the context
of digital control of continuous-time systems it 1is rather
surprising, to say the least, that this regulator problen has only
received minor attention. The reason is that instead the solution
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to the discrete-time regulator problem is used. However, this
regulator problem minimizes a discrete-time quadratic oriterion
which only considers the continuous—time behavior of the
perturbation variables (8a,b) at the sampling instants. It
therefore constitutes only an approximate solution to the problem
since it completely disregards the Iinter-sample behavior! This
c¢reates the demand for a "small" sampling time to prevent
undesirable inter-sample behavior. The discrete-time criterion
furthermore must be selected to generate a desired continuous-time

behavior!

4. First order controllability and reconstructibility of a
nonlinear continuous-time system about a trajectory

A first order approximation, i.e. the linearized model (7),
is used to approximate the dynamic behavior of the perturbation
variables 3x(t) and Su{t). The error using this approximation is
primarily determined by quadratic terms in 8x(t) and Su(t) as long
as these perturbation variables remain small. This justifles the
use of the qguadratic criterion (9) which tries to minimize
quadratic terms in 8x(t) and 8u(t). Still the use of the gquadratic
criterion (9) does not guarantee that the perturbation variables
remain small, If the linearized dynamics (7) are differentially
uncontrollable over a time interval (t1'tz) within [t t,] this
implies that certain deviations &x(t), te(tﬁta) from the
trajectory ocannot be controlled to zero within (t1’t2) (Van
Willigenburg 1990b). This however implies that those deviations
dx(t) are not influenced by the control during (ti,tg, so they
cannot in general be expected to remain small. Since the
controller design is based on the idea that the perturbation
variables do remain small, the differential controllability of the
linearized dynamics is an important property considering the
successful application of the controller presented in section 2.
Van Willigenburg (1990b) demonstrated that for a rigid manipulator
with friction, which we will consider in this paper as an example
of a nonlinear system, any trajectory is first order controllable,
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i.e. the 1linearized dynamics (7} about any trajectory are
differentially controllable. In case of rigid manipulators the
linearized dynamics about any trajectory are alsc differentially
reconstructible. The property of differential reconstructibility
is dual to the property of differential controllability (Van
Willigenburg 1990b). Although not recognized as such by Van
Willigenburg (1990b) the differential reconstructibility of the
linearized dynamics about the trajectory, which may be called
first order reconstructibility, presents another important
property for the successful application of the controller in
section 2. This can be intuitively understood since in case the
linearized dynamics are differentially unreconstructible over a
time interval (t,t) within [ty t,] certain deviations &x(t) do
not affect the measurements during (trta)' and therefore &x(t)
may become unreliable and we cannot in general expect 3x(t) to

remain small within {t1'tz)‘

In case of the digital controller of section 3, aspects of
controllability and reconstructibility of the linearized dynamics
about the trajectory should be reconsidered, since we have sampled
measurements and a piecewise constant control. Because of this,
loosely speaking, the system will always be less controllable and
reconstructible, so compared to the controller of section 2,
things will not improve. Concerning controllability of linear
systems by means of piecewise constant controls there is the
result of Furi et al. {1985), stating that complete
controllability by means of continuous-time controls is equivalent
to complete controllability by means of piecewise constant
controls, Since we are interested in results over the finite time
interval [t t,] this is not the exact result we are looking for.
In this paper we will not further concern ourselves with these
problems, although they certainly are of interest, We will just
apply the digital controller design procedure ocutlined in section
2 and 3 to a robotic manipulator and observe the result.

5, Digital optimal control of the IBM 7535 B 04 robotic
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manipulator

In this section we present examples of the numerical
computation of digital optimal controllers for the IBM 7535 B 04
robotic manipulator, designed according to the procedure described
in section 2 and 3. Simulation results are also presented to
demonstrate the behavior of the digital optimal robot control
system.

We will use a dynamic model of the IBM 7535 B 04 robot taken from
the 1literature (Geering et al. 1986, Van Willigenburg and Loop
1990) . Before we present the examples we want to stress that our
air is not to apply these controllers in practice, our aim is
merely to demonstrate how the design procedure works and that the
numerically computed controllers, when applied to the nonlinear
system disturbed by additive white noise, result in a proper
performance, To be more specific, we will not be concerned with
the careful choice of the design parameters, i.e. the covariance
matrices (4), (5) and f6) and the matrices appearing in the cost
criterion (9). If the aim is to apply the controller in practice
the careful choice of the design parameters is essential, and that
is where the ability of the engineer comes in,.

Although the numerical solution to the digital IQG problem (Van
Willigenburg 1990a} allows for the choice of time-varying
covariance and criterion matrices we will <chose both the
covariance and the criterion matrices to be time-~invariant to

simplify the examples.

Step by step we will now follow the design steps, i.e., the parts
A, B and ¢ outlined in section 2.

Part A: Deterministic Modeling.
Step 1: Determination of f{x(L},u(t),t).

The dynamics of a rigid N link manipulator with friction
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are given by (Van Willigenburg and Loop 1990)

%, = x, [29a]

]
I

—M"(xl)'l‘(xl,xz) + Mt (x)u. {29b]

where x, is a vector of dimension N containing the joint angles of
the 1links, x, is a vector of dimension N containing the joint
angular velocities, M(x ) ig a inertia matrix depending on the
momentary configuration of the robot and T(x&,xz) represents
centrifugal, coriolis, gravity and friction forces. Finally u is
the control vector of dimension N, containing the actuation torque
applied to each joint. Since T(x,.,x)) in (29b) is highly nonlinear
manipulators constitute nonlinear systems, while ¥, and x,
constitute a natural choice for the state variables. Observe that
the system 1s linear in the control. The dynamics of the IBM 7535
B 04 robotlc manipulator can be modeled using the closed fornm
dynamics of a rigid two link manipulator (Van Willigenburg and
Loop 1990} given by Asada and Slotine (1986). In terms of equation
(28) we obtain

x, = (8,,8,)", {30a]
x, = (6,6)", [30b]

where e, and 8, are the joint angles of the links,

M _H
M(x,) = | ", [31)
21 22
where
- 2 2 2
M o=ml, + I +m[I]+ 1, + 211 .cos(8,)] + I, {32a)
_ 2
M12 = n&lllacos(sz) + malc2 + Iz, {32b)
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Mél= Hm’ [32¢)
M, = malza + I, [32d)
and

—héz - 2h6 6, + 6 +F |
B 2
where
h=mll sin(e,), {34a)
GH = "chug cos(el) + ng(lczcos(el+ 62) + 11C°s(91)}' [34b]
G2 = malcag cos(91+ 92), [34c}
F o= clsgn(él) + Viél’ [344)
F2 = casgn(éz) + Vaéa' [34e]

X and Iz are the moments of inertia with respect to the center of

1
mass, m and m, are the total masses, 1 and lc2 the distances

between the center of mass and the joingi v, and v, the viscous
friction coefficients and c, and ¢, are the coulomb friction
coefficients of the corresponding 1link. Finally ¢ is the
acceleration due to gravity. Eguations (33b) and (33¢)} represent
gravity forces, in case the robot moves in a vertical plane. Since
the IBM 7535 B 04 robot moves in a horizontal plane they should be
disregarded. The Coulomp and viscous friction forces (33d) and
(33e) are neglected in case of the IBM 7535 B 04 robot. The
remaining parameter values appearing in (31) and (33} for the IBM
7535 B 04 robot are as follows (Geering et al. 1986, Van

Willigenburg and Loop 1990)
1 = 0.4 m 1 =40.26n 1 = 0.161 m
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= 2 — 2 _ 2
m, = 21 kg mllc1 + I1 = 1.6 mky I2 = 0,273 mkg. [35)

Step 2: Determination of g{x(t),u(t),t}

Each joint angle of the manipulator is neasured by an
encoder, and often each Jjoint angular velocity is measured by a
tacho generator. We will consider both cases so we either assume
the complete state is measured, i.e.

y(t) = C_(t) x(t) (36a)
where

1000
c ={%100 [36b]
¢ 0010

00021

or we assume

y(t) = € (t) x(t), (37a]
where
1000
c, = 01060 [37b]
0D0O0O
0000

Step 3: Dbetermination of 1ideal Input-state-output response,
u (t), x (t), y,(t).

As the ideal input-state response we take a time-optimal
solution computed by Van Willigenburg and Loop (1990) who
presented numerical procedures to compute time~optimal solutions
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for rigid manipulators. The time-optimal control problem is to
find the control which drives the manipulator from a fixed initial
to a fixed final state in minimum time given bounds on the control
variables and a deterministic dynamic model of the manipulator. We
take a solution computed by a method based on controel
parameterization (Teo et al 1989). The control parameterization
consists of the assumption that the control is piecewise constant,
which is the necessary assumption to be made, in case of digital
control. Furthermore the sampling times are assumed to be
equidistant. Given the fixed initial state

x,(t)) = [0 00 03", [38a]

the fixed final state

x,(t) = [2.5 0 0 0}, [38b]
the bounds

lu, (t)] = 25.0 telt,,t 1, (39a)]
fu (t)] = 9.0 teft ,t, ] [39b)

on the control variables and the deterministic dynamics (30)-(35)
of the IBM 7535 B 04 robot the time-optimal piecewise constant
control 1is shown by the broken lines in figure 5b and the
corresponding state-trajectory by the broken lines in figure 5a.
The time-optimal solution presents the control in an open-loop
fashion. To obtain a solution in feedback form, which we need in
practice to overcome modeling and measurement errors and
uncertainty, we need to recompute the solution on-line at every
sampling instant. Since sampling times for robot manipulators are
of the order of 10-100mS, even for very fast computers, this is
impossible. Therefore we design a digital compensator, as
described in sections 2 and 3, to control the system about the
time-optimal input-state response. In this case the number of
on-line computations is very small. To bhe able to control the

262



DIGITAL OPTIMAL CONTROL OF NONLINEAR UNCERTAIN SYSTEMS

system about the time-optimal input-state response, the bounds
(39) must constitute conservative bounds, since‘they must allow
for control corrections $u(t). This is the price one has to pay
for the fact that we incorporate uncertainty into the time-optimal
control problem.

Part B: Stochastic Modeling,

As already mentioned, our aim is not to design a
controller which will be used in practice, but merely to
demonstrate the controller design procedure, Therefore we will
only briefly, or not at all, motivate the choice of the following
design parameters. In practice the choice of the design parameters
is essential and that is where the ability of the engineer comes

in.

Step 4: Modeling of uncertainty in the initial state of the
system (1).

We chose
x(t0)=x(to) [40]
and
0.01 0 0 0
0.01 0 0 [41)

0
0 0 0.09 0
0 0 0 0.09

y =
Q

Equation (41) assumes the standard deviation in the
initial joint angles to be 0.1 rad and the standard deviation in
the initial joint velocities to be 0.3 rad/s. Finally it assumes
the uncertainty in the initial values of the state variables to be

uncorrelated.
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Step 5: Modeling of uncertainty in the system (1).
We chose

.235 0 0 o

o 0 .563 0 0

E(t) = , te[t ,t 1. (42}
0 0 3.20 0

0 0 4] 34.3

This choice is such that at each time t the standard
deviation of each component of i(t) equals 10 percent of the
maximum value of the corresponding component of fx (t),u (t),t)
over the interval [t,it,. ). The cholce furthermore assumes the
noise on each component of X to be uncorrelated with the noise on
the other components of x.

Step 6: HModeling of measurement uncertainty.
We chose

le-4 0 0 ¢

¢ le-4 0 Q

0 0 9e-2 0
0 Y 0 9e-2

e(t) = telt,,t, ] [43]

in case the output equation (36) holds and we chose

te(t,,t,] [(44)

le-4 O
e[

0 le-4

in case the output equation (37) holds. This choice
assumes the standard deviation of the joint angle measurements to
be 0.01 rad. This low value reflects the fact that encoders, which
measure the joint angles, give very accurate results., The standard
deviation on the joint velocities, measured by tacho-generators is
chosen to be 0.3 rad/s. Again the measurement noise on each output
variable is assumed to be uncorrelated with the noise on the other
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output variables.
Part C: Linearization modeling.
Step 7: Establishing of the linearized model

According to (7c) we have to compute

ar af ag
A,(t) = ¢ By(t) = P G(t) = :
8x(t)]o du(t)]|o ax(t)]o

The numerical algorithm to compute the solution to the
digital LQG problem demands the evaluation of (7¢) at a finite
number of time-instants, depending on the number of integration
steps performed during each sampling intexval (Van Willigenburg
1990a). We perform the linearization (7¢) numerically and chose 10
numerical integration steps during each sampling interval.

Step 8: Selection of Q,(t), R (L} and F,

We chose
10.0 ¢© 0 0
0 . o
Q,(t) = 1.0 ° telt,t,], (45
0 o 0.1 0O
0 0 ¢ 0.1
0.1 0
R,(t) = teityit,ds (46)
o o 0.1 of “r
100.0 © 0 0
F |0 100 0 o0 (47
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When we chose Q, R, and F_ to be diagonal matrices, as
in (45)-(47) the feedback gain matrix is uniquely determined by
the ratios of the diagonal elements of these matrices, Note that
F0=10Q0 which reflects the fact that we want the final state to be
reached c¢losely, which corresponds to theé objective of the
time-optimal control problem. The other ratios were chosen
experimentally using simulation results as the ones presented in
the figures 5-8.

The simulation result in figure 5 is obtained with the digital
robot controller designed using the above design parameter values.
The simulation was performed using the uncertain dynamics (1)
determined by (29)~(35), (40)-{42), {(37), and {44). We simulated
the white gaussian system and measurement noise using randonm
number generators. To demonstrate the effect of the white gaussian
system noise we included figure 9 which shows a response of the
robot when we only apply the ideal input, i.e. the open loop
contrel of figure 5b to the system. As expected, if we do not
compensate for deviations, the system behavior becomes highly
undesirable,

The ideal input-state response was obtained using the fifth and
sixth order Runge Kutta integration algorithm IVPRK from the IMSI,
library (Van Willigenburg and Loop 1990) with a wvariable self
adjustable step size. This routine can not be used to integrate an
uncertain system since it repeats integration steps and compares
the results to determine whether the accuracy is appropriate.
Obviously the uncertainty prevents the results of repeated steps
to match. We used a fourth order Runge Kutta integration routine,
with a fixed step size equal to 1/10 of the sampling time. This
proved to be sufficient to closely reobtain the ideal state
response from the ideal input, demonstrating that the accuracy of
integration is comparable to that of the routine IVPRK.

Since (1) constitutes an uncertain system figure 5 shows just one
realization of the robot control system response, We have depicted
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another in figure 6. Finally figure 7 and 8 show two realizations
of the response of the robot control system when the complete
state is measured, i.e. where equations (37) and (44) are replaced
by (36) and (43).

The simulation results are merely presented to demonstrate that
the design "works" and results in a "proper" system behavior given
the uncertain dynamics (1). We do not intend here to specify what
nproper" is neither compare it to other vresults. As already
mentioned several times, the success of +the digital LQG
compensator design, depends very much on the ability of the
engineer to translate the "real world" into the mathematical nodel
(1) and the criterion (9). What can be said is that given the
linearization (7) of the model (1), which approximately describes
the dynamic behavior of small deviations &x(t) and du(t), and
given the criterion (9) the digital IQG compensator constitutes a
truly implementable optimal solution to the digital control
problem (7}, (9).

Conclusions

Since automatic control is almost exclusively performed by digital
conputers it is rather surprising that the proper adaptation of
the continuous-time IQG problem and solution, to incorporate the
digital nature of the controller, has drawn very little attention
over the years. In this paper we used a recently developed result
to numerically compute the solution to the digital IQG problem,
which does incorporate the digital nature of the controller
properly, to treat the design and computation of truly
implementable digital controllers for nonlinear uncertain systems.
The design procedure may be compared to the one presented by
Athans (1971) who treated the design of continuous~time
controllers for nonlinear uncertain systems. It has been
demonstrated in this paper that only the "mechanical" part of this
design procedure has to be adjusted, i.e. the design parameters do
not have to be adjusted!. We simply have to replace software to
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compute continuocus-time controllers by software to compute digital
controllers. The software to compute the digital controllers has
been recently developed.

Both the design of continuous-time and digital controllers
presented 1in this paper is characterized by the fact that the
controllers need only a very small number of computations to be
performed on-line. Considering the control of robot manipulators,
which constitute highly nonlinear systems where the computational
burden on the computer is high since sampling times are often in
between 10 and 40mS, this property is cruecial, Again it is rather
surprising that the design procedure based on the solution to the
1QG problem has found very little application in this area. In
this paper we computed digital controllers for an industrial
robot, Through simulation we demonstrated that the demand for
'small® sampling times, caused by in proper incorporation of the
digital nature of the controller in the design, can be relaxed
using our controller design procedure which incorporates the
digital nature of the controller properly.

Concerning the applicability of the continuous-time controllers we
have briefly mentioned the properties of  differential
controllability and reconstructibility of the linearized dynamics
about the trajectory, called first order controllability and
reconstructibility. In case these properties are not met questions
remain how serious the proper behavior of the control system is
affected. In case of digital controllers we also have to consider
the effect of sampling on the controllability and
reconstructibility of the. 1linearized dynamics about  the
trajectory. Results are known with ' regard to complete
controllability by means of piecewise constant controls (Furi et
al., 1985), furthermore the reconstructibility of discrete-time
systems is a well Known property. However these properties are
defined over an infinite time-interval. Our concern is with
properties defined over a finite time-interval. This presents a

new area of research.
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Conclusions

In this thesis we have demonstrated, through the digital control
of an industrial two link cartesian manipulator, that solving
digital control problems without making any approximations, i.e.
explicitly considering the inter-sample behavior, relaxes the
demand for a "small" sampling time. In case of manipulator motion
control this is very important since the computational burden on
the computer is generally high.

Except for rigid cartesian manipulators, rigid manipulators
constitute highly nonlinear systems, which are linear in the
control. In this thesis we derived a new numerical test to verify
whether bang-bang solutions to nonlinear non-singular time-optimal
control problems, linear in the control, satisfy Pontryagin’s
Minimum Principle. This test revealed the new important fact that
the probability for a bang-bang solution with more than n-1
switches to satisfy Pontryagin’s Minimum Principle is almost zero,
where n is the dimension of the system. In practical situations
the search may therefore be restricted to solutions with no more
than n-1 switches. The method has been applied to non-singular
time-optimal control problems for rigid manipulators. The results
were used to demonstrate that a method based on controi
parameterization, which wuses the piecewise constant nature of
digital controls, generates near time~optimal solutions for
non-singular time-optimal manipulator control problems. We expect
it to generate near time-optimal soluticons for singular problems
as well., Furthermore this method allows for the introduction of
velocity bounds for the individual links of the manipulator. In
practice these boundsg have to be considered as well.

We extended the scolution to the problem where a rigid manipulator
has to travel a path in minimum time, given bounds on the control
variables, to include velocity bounds for the individual links as

well.
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We further developed a type of linear quadratic regulator and
tracker, called the digital regulator and tracker. Based on thisg
development for the first time we presented a numerical method to
compute both the digital regulator and tracker for linear
time-varying stochastic systems.

The digital tracker directly resulted in the design computation
and implementation of digital controllers for an industrial two
link cartesian manipulator. The digital contreollers need a very
emall number of computations to be performed on-line and
explicitly take into account the inter-sample behavior and the
plecewise constant nature of the controi.

The digital regulator for time-varying linear stochastic systems,
allowed the design and computation of digital compensators for
nonlinear systems disturbed by additive white system and
measurement noise. These digital compensators are used to control
small deviations from a trajectory to zero and explicitly consider
the inter-sample behavior. The trajectory represents a desired
admissible behavior of the deterministic part of the system. It
often is the outcome of a nonlinear optimal control problem. We
demonstrated that taking into account the piecewise constant
nature of the control may simplify the seolution of these nonlinear
optimal control problems.

For manipulator motion control we proposed the use of a digital
compensator, based on the digital regulator Ffor time-varying
linear stochastic systems, to control deviations from a trajectory
to zero. The optimal control problem which determines the
trajectory should take into account the piecewise constant nature
of the control. The result constitutes a digital feedback
controller, which needs only a very small number of computations
to be performed on-line. Furthermore it explicitly considers the
piecewise constant nature of the control and the inter-sample

behavior.
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Since the proposed manipulator motion controllers need a very
small number of c¢omputations to be performed on-line and
explicitly take into account the piecewise constant nature of the
control and the inter-sample behavior, the demand for "small®
sampling times may be relaxed., Therefore even for rigid
manipulators with a large number of degrees of freedom, they are
suited for implementation in relatively simple, slow computers.

For nonlinear systems we introduced the concept of first order
controllability and reconstruétibility. We demonstrated that rigid
manipulators are both first order controllable and reconstructible
systems. These properties were shown to be important to guarantee
the successful use of a continuous-time compensator to control
nonlinear systems disturbed by additive white system and
measurement noise, In case of digital compensators these
properties have to be reconsidered. This presents an area of
possible future research.

The identification of the dynamic parameters of manipulators has
not been ccnsidered in this thesls. The success of the optimal
control approach depends on the accuracy of the manipulator
dynamic model. Although we expect it must be possible to identify
manipulator parameters accurately, since manipulators are well
defined mechanical systems, it 1is often mentioned in the
literature that the inertia parameters are difficult to obtain.
Obviously this is another area which needs further investigation.

Only if the nonlinear manipulator dynamics cannot be obtained
accurately, or if the load the manipulator has to carry is really
unknown, this calls for robust or adaptive control approaches.
It is the authors opinion that those approaches should not be used
just to aveid the use of nonlinear dynamic models.
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