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without making any approximations. They derived the digital
optimal regulator and tracker for linear time-varying systems.

The digital optimal regulator permitz the design of a digital
optimal perturbation controller for non linear systems that have
to track reference trajectories. Important applications are e.g. a
robot performing a prescribed motion or a batch fermentation
process, where in both cases the linearized dynamics about the
trajectory constitute a time-varying system. Until now only the
computation of the digital optimal regulator for time-invariant
systems has been considered (Van Loan 1978). The digital optimal
tracker, based on dynamic optimization, has never been considered
in the 1literature before. This is remarkable because it can be
applied in all situations were a linear system, controlled by a
computer, has to track a reference trajectory, e.g. a cartesian

type robot performing a prescribed motion.

Van Willigenburg and De Koning (1990a) derived the digital optimal
regulator and tracker, in case of deterministic systems and
complete ‘state information at the sampling instants, via both
static and dynamic optimization. In a second paper the authors
solved the problems in case of stochastic systems and incomplete
state information (Van Willigenburg and De Koning, 199%0b}, which
is only possible using dynamic optimization. PThe solution is given
in feedback form. Although the authors solved the problems, they
did not specify numerical procedures to compute the digital
optimal regulator and tracker. In this paper we will present such
procedures, based on both static and dynamic optimization, For
several examples it is shown that the solutions based on both
approaches are identical, which they of course should be. Finally
it is demonstrated that the computational procedure based on
dynamic optimization 1is superior with respect to accuracy
computation time and the use of computer memory.

2. The digital optimal regulator and tracker

2.1 The digital optimal regulator and tracking problem
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For convenience, and since the problems are certainty
eguivalent (Van Willigenburg and Pe Koning, 1990b), we will treat
the digital optimal regulator and tracking problem for
deterministic systems and complete state information at the
sampling instants. However, in section 3 where we present
nurmerical procedures, we will treat the case of stochastic systems
and incomplete state information as well. Consider the
deterministic continuous-time linear time-varying system

é(t) = A{t) x{t) + B{t) u(t), (1a)
with known initial state

¥(ty) = X, (1b)
where A(t) and B(t) are the system matrices, The control is
pliecewise constant, i.e.

k=0,1,2,3...., {1c)

u(t) = u(t teft,,t

x) 1 k+1) ¢

where t, are the, not necessarily equidistant, sampling instants.
We assume complete state information at the sampling instants, so
x(tk), k=0,1,2,3,... are available.

The digital optimal regulator problem for this system is to
minimize

t
£
7= [xT(e) oce) x(e) + aT(£) R(E) u(t)] At + X' (tg) H x(ty) ),

to

{2)
where Q{t)=0, Hz0 and R(t)z0. Furthermore

t, =t {3}

bid N’
where N is a positive integer.
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The digital optimal tracking problem takes the following form.
Given the system (1) and a reference trajectory

x.(t), tp st st (4}

minimize

e
3= [T x0T @(t) (x(t)-x,(t)) + uT(t) R(E) u(t)] at +
t

4]
(x(tg) - % (t )T H (x(ty) = x,.(t.)) (5)

where again (3) holds and we assume Q(t)=0, Hz=0 and R(t)=0.

2.2 Solution to the digital optimal regulator and
tracking problem via static optimization.

The solution to the digital optimal regulator and
tracking problem is uniquely determined by the control sequence

u, = u(t k=0,1,2,....,N-1, {6)

k k)l

Introducing so called block pulse functions vy (L) defined by

vk(t) 1, te[tk,

Cyra )
{7}

v (t) =0, elsewhere,

the control at each time t, ty =t =t is given by

N-1
u(t) = E: v (t) vy (8)
=0

or
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u

u

' (%)

0
1
u(t)=(vg (L) v (B v (B)T ey o (B)T]

2
_UN 1-1
where I are identity matrices of dimension m where m is the
dimension of the control vector u(t). Eguation (9) can be written

as

u{t) = v(t) U, (1.0)
where

I L L T T
U= Wy Uy Uy eeeevely g ] (11)

is a vector of length mN and

v{t) = [ VOIm lem vzlm .....vN_lIm 1 (12)

is a matrix with dimensions m x mN. The solution to the
digital optimal regulator problem is given by (Van Willigenburg a
Koning, 1990a)

1

U= - R' ~ M x(tg) s (13a)

and the minimum cost are

1

g = %t (eg) (m-m TR T ) x(t ) (13b)
where
te
HY = 87 (t,,t,) H Bk, to) + [ 2T (t,t0) o(t) B(t, ) dt (14a)
%

which is a n x n matrix,
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t

£
T T
M/ = To(to,tg) H 8(tg,t,) + J Iyt tg) Q) #(t,ty) dat (14b)
tO-
which is a mN x n matrix,
te

R’=F3(tf,t0) H T, (g, t) +J[F$(t,to)Q(t)Fv(t,to)+VT(t)R(t)V(t)] dat
&

0
{l4c)
which is a mN x mN matrix,
t
L, (t,ty) = J 2(t,s) B(s) V(s) ds (14d)
t0

which is a n x mN matrix, where n equals the dimension of system
(1), and ¢ is the state transition matrix of system (1). Except
for t=t, golution (13a) is not in feedback form. To obtain a
solution in feedback form, at every sampling instant t,, one has
to solve a new static optimization problem (Van Willigenburg and

De Koning, 1990a). The solution in feedback form is given by

1

Uy = -Ri_ ML x(t,), x=0,1,2,..,N-1, (15)
where

_ T T T T T
Up = [ Uy Wy Weopennnty o ] (16)

of which only v, is used for the actual control. Mﬁ and Rﬁ are of
dimension m(N-k) % n and m(N-k) x m(N-k) and given by (14) with t0
replaced by tk' Note that for calculation of the optimal control

{15) it is sufficient to know R’ and M’.
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The solution to the digital optimal tracking problem is given by

1

U = -R' (M'x(ty)- L), {17a)

and the minimum cost are,

J = xT(to)(H'-M’TR’—lu’)x(to)+2xT(to)M’TR’-lL'—L’TR’-lL’+J1 (17b)

where H’, R?’, M’ and Fv are given by (14), and

t
£
L= Ty(to,tg) H x,.(t,) + J FL(t,ty) Q) x.(€) dt, (18a)

%o

and finally,

t
£
Jl(x(to),xr(t)wj [<E(tra(tr%, (8)-2xp (1 QI B(E £y x(E) |t
t

0

+x§(tf)ﬁxr(tf)—2x§(tf)a¢(tf,to)x(to). (18b)

As in the regulator case, except for t=t0, the solution is not in
feedback form. To obtain a solution in feedback form one again has
to solve a static optimization problem at each sampling instant
tk' The solution in feedback form is given by (Van Willigenbury
and De Koning, 1990a)

-1

U, = -R!

X LT x(t) - LY, k=0;1,2,..,N-1, (19)

where Uk’ Ri, Mi are the same as in the regulator case and L,
equals (18a), with to replaced by tk' Note that for calculation of
the optimal control (19) it is sufficlent to know R,’, Mk' and
L, ‘. Finally we should remark that c¢learly the solutions only

k
exist if R£>0, k=0,1,2,..,N-1, If Q{t)z0, Hz0 and R(t}z0, as
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assumed in paragraph 2.1, this condition is nearly always
satisfied (Van Willigenburg and De Koning, 1990a).

Now very important, and opposite to what is mentioned by Nour

Eldin (1971), except for Rﬁ which equals the final m(N-k) rows and
columns of R’, the matrix Hﬁ, which is involved in the solution of
the digital optimal regulator problem, and both My and Ly which
are involved in the solution of the digital optimal tracking
problem, are not sub matrices of M’ and L’ respectively. They have
to be computed again at every sampling instant which presents a
serious drawback compared to the dynamic optimization apprcach, in
case of both the digital optimal regulator and tracker given in
feadback form {see paragraph 2.3).

2.3 Solution to the digital optimal regulator and
tracking problem via dynamic optimization.

The solution of the digital optimal regulator and
tracking problem via dynamic optimization involves two stages.
First the digital optimal regulator and tracking problem, with the
piecewise constant constraint on the control, are transformed into
g0 called equivalent discrete-time problems, with unconstrained
control, since these can be solved using "standard" techniques
{Van Willigenburg and De Koning, 1990a). The original

digital optimal regulator problem (1), (2), (3) can be transformed

the following equivalent discrete-time problem with unconstrained
control. Given the so called equivalent discrete-time system

X = $ + I, u

k+1 = B ¥t T oy (20a)

which represents the continuous-time system behavior at the
sampling instants where

X = x(t,), (20b)
U = uty), {20c)
@ = Bty 0t (204)
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Tyo= Tty ity (20e)
with & being the state transition matrix of system (1) and
t
rit,t,) =I &(t,s) B(s) ds (21)
T
nminimize
N-1
_ T T T

J = E: [Xk Qp % + 2 x M ou+ uk R, uk] + xy H %y (22)

=0
where

Cke1 T
0, = j #T(t,t,) 0(t) (t,t,) dt, (23a)

tk .

o1 T
M, = J #T(t,t,) Q(t) T'(t,t,) dt, (23b)

tx

S T

R, = J [R(t) + IT(t,t,) Q) T(t,t,)] dt. (230)

tx
If Rk>0, kao and H=0, which holds in almost any case if R(t)=zO0,

Q{t)=0 and Hz0, as assumed in paragraph 2.1 {Van Willigenburg and
De Koning, 1990a), the solution of the equivalent discrete-time
problem ({20), (22) exists., The solution can be presented in
several forms (Van Willigenburg and De Xoning, 199%0a). We will
present the form that will ke used to numerically compute the

digital optimal regulator.

w == (KR Mk)xk, k=0,1,2,..,N-1, (24a)
T

K= {TSpaalx +Rk) b ISy o (24b)

Sy = (2} -T Kf) s 1(¢§-PkKk)+Kﬁ R KIHQL, Sy =H, (24¢)
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/=8, -T\R k k, (244)

Qf=0y M, R M. (24e)
Equations (24b), (24c) constitute a Riccati type recursion,
written in the so called Joseph stabilized form which is known for
its good numerical performance (see section 3).

The digital optimal tracking problem (1), (3), (4), (5) can be
transformed into the following eguivalent discrete-time problem
(Van Willigenburg and De Koning, 1990a). Given the eqguivalent
discrete-time system (20) minimize

N-1
J = xTQ X, + 2xTM u, -+ uTR v, -2L, X, =27, u, +X + xTHx
kK*k"k KKk Kk 'k Kk k'k 7k N TN
k=0 P I
-—2xr(tf)HxN + xr(tf)er(tf), (25)

where Qs My, R, are given by (23) and

Ly = f KL xTt) o) e(e,t o 4t (26a)
Ty

T, = f k+1 XL(t) Q(t) T(t,t) dt, (26b)
t

X, = f k+l X () Q) x_(t) dt. (26¢)
t

Again if Rk>0, Qkao and H=0, which holds in almost any case if
R(t)=0, Q(t)z0 and H=0, as assumed in paragraph 2.1 (Van
Willigenburg and De Koning, 1990a), the solution of the equivalent
discrete-time problem (20), (25) exists. The solution can be
written in the following form which will be used to numerically
compute the digital tracker (Van Willigenburg and De Koning,
1990a)
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——(K +R k)xk Y k+1 k Kt k=0,1,2,..,8-1, {27a)
Ke= (Ce8yc TR T TSy ¥ (271)
K= (RTS8, T 7T, (272)
K2=(R 4TS, 1) ) (274)
8, =(¥L-T KL T8, 1 (#L-T KL +RETR KI+QL, Sy =H, (27e)
V= (LT KO Ty, KT T viHx, (Eg) (271)
bf=0, - FkRk Mk, (27g)
Qp=0y "M R My, (27h)
L!=L ~T R M. (271)

k "k "K'k k°

Note that equation (27b,e,q,h) are ecqual to (24b,c,d,e), which
implies that the feedback for both the digital optimal regulator
and tracker is the same, which matches the result obtained from
static optimization, since equation {(15) and (19) imply egqual
feedback as well. HNote furthermore that we did not give an
expreszion for the cost of the digital optimal regulator and
tracker. This will be done in section 3 where we discuss numerical
solutions for stochastic systems and incomplete state information,

2.4 Advantages of dynamic optimization

Using static optimization, at every sampling instant one
has to compute a new optimization problem and corresponding
solution, to obtain the digital optimal regulator and tracker in
feedback form. Furthermore the dimensions of the wmatrices
constituting the solutions (15), (19) obtained from static
optimization, increases linearly with the horizon of the problem,
For problems with large horizon the result obtained fromstatic
optimization therefore becomes impractical considering computation
time, and the wuse of computer memory. Dynamic optimization
directly results in solutions given in feedback form and the
dimensions of the matrices which determine the solutions (24},
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(27} are small and independent of the horizon. Only the number of
recursions depends linearly on the horizon of the problem. Finally
in section 4 the result obtained from dynamic optimization will
also appear to be numerically more reliable. Summarizing the
dynamic optimization approach is superior with respect to
accuracy, computation time and the use of computer memory.

3. Numerical procedures to compute the digital optimal regulator

and tracker
3.1 Computational tasks

Consider the digital optimal regulator given by (15),
{13b) and (14) and the digital tracker given by (19}, (17b), (18)
and {14} based on static optimization., Furthermore consider (20),
(21), (23), and (26) which appear in the recursions (24} and (27)
that constitute the digital optimal regulator and tracker, based
on dynamic optimization. To compute these equations we need an
algorithm to compute the state transition matrix of system (1a)
and a numerical integration procedure. We will present an
algorithm to compute the state transition matrix of a general
iinear time-varying system, which is a natural extension of the
scaling and sguaring algorithm (Moler and Van Loan, 1978) used to
compute the state transition matrix of 1linear time-invariant
systems. This algorithm fits very nicely a numerical integration
procedure based on the trapezium rule, where the integrands are
evaluated at equidistant times, as will be shown. The result will
be that the eguations mentioned above can all be computed
recursively, forward in time, where the error due to numerical
integration is of the same order as the error due toc the numerical
computation of the state transition matrix. Finally we will deal
with the computation of the recursions (24), (27) and the cost of
the digital optimal regulator and tracker based on dynamic
optimization.

3.2 Computation of the state transition matrix
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In the sequel we will use the following well‘known facts
concerning the state transition matrix of the general
continuous-time linear systems (1a)}.

Bty ty) = B(,E,) B(t,,t,), ¥ bbby, tost st stosty, (28)
and
B(t,,t) = I, Vt, tgst;stg, ' {29)

where I is the identity matrix. Furthermore if

A(t) = A, te(t,, t,], tyst,styste, (30)

i.e. A(t) is a constant matrix within [tl,tz} then
@(tl,tz) =,exp(Al(t2—t1)). (31)

To numerically compute the state transition matrix &, A(t),
tost=ty in system (la) is approximated by a series of constant
matrices in the following way (Rao and Ganapathy, 1979}

i=0,1,2,..,8-1," (32a)

te{ti,t

AT (t) = By o) ¢

11’

where 8 is a positive integer and ti are equidistant i.e.

t, =ty + i At, : {32b)
and
ti+1
Ay = j " A{t) dat. (32¢)
i .

i

Given (ia), (32a), and (32b)
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At = t. / S. (32d)

The piecewise constant approximation (32a) of A(t) is such that
over each time interval {ti’ti+1) A{t) is approximated by its
average value Ay given by (32c). By reduecing At, the length of
the time intervals [ty .4}, the approximation can be made
arbitrarily close (Rac and Ganapathy, 1979). Summarizing we
approximate the system (1a) by

x(t) = A‘(t) x(t) + B(t) u(t). (33)

Since A’(t) is piecewise constant the state transition matrix
of (33) according to (32), (30) and (31) satisfies

B(ty,q1,8) = exp(AAtL), (34)

and according to (32),(34), and (28)
i-1

B(tyitg) = 1 exp(AAt). {35)
k=0

Note that when the time-varying system (la) belongs to the class
of commutative systems, i.e.

A(ty) A(t,) = A(t,) A(t,),- LVt teltg,tL], (36)

then (32¢), (34), and {35) also hold for the original system (la}
since for a commutative system (Wu and Sheriff, 1976)

: t

2
B(t,,t,) = exp[ f A(t) dt ], tost stost,. (37)

t ‘

Only if the system (la) does not belong to this class, which
according to (36} is very restrictive, (32¢), (34), and (35)
constitute approximations with regard to system (la). So in that
case it is necessary to chose At sufficiently small so that {33}
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approximates (1a) close encugh. Summarizing (32), (34) and (35)
are used to approximate the state transition matrix of system
(1a). Note that the computation (35) can be done recursively,
forward in time. If At«l then (34) can be very well approximated
by a second order Taylor expansion (Moler and Van Loan, 1978)

exp (AAt) = I + A,At + 0.5A%At2, (38)

The error using (38) is of the order at3, As will turn out later,
the error using the trapezium integration rule is of the same
order. If the reguirement At¢l is to severe considering -the
approximation of system (la) by system (33), then (38) could be
replaced by another method to compute exp(AiAt). A well Xnown
method is the scaling and sqguaring method given by (Moler and Van
Loan, 1978)

exp (hAt) = (exp(AiAt/m))m, (39)

where m is a positive, sufficiently large integer so that At/m«l
and

exp (AjAt/m) ~ I + A;At/m + 0.5a2 (at/m) 2, (40)

Note however that (39), {40) is exactly the same as (35), (38)
with At replaced by At/m and where Ay, k=0,1,2,..,1 are kept
constant and equal to Ase If it does not take much effort to
evaluate A(t), clearly choosing At¢l immediately and using (35),
{38) is preferable, from the point of wview of acouracy and
simplicity. In the seguel we will chose At«l, and such that (33)
approximates (l1a) properly, and use (32), (35), and (38) to
compute the state transition matrix of the time varying system
{la). The error in (38) is then of the order at3, This procedure
is a mnatural extension of the scaling and sgquaring method,
originally designed to compute the state transition matrix for
time-invariant systems., In section 4 examples are presented that
demonstrate the accuracy of this method.
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3.3 Numerical integration.
Consider a general matrix function
F(t), te(t,, te). (41)

The trapezium numerical integration rule, where the integrand is
evaluated at eguidistant times tyy given by (32b), is based on the
following approximation

ti+1

J F(t) dt =~ At/2 (F(ti) + F(t i=0,1,2,..,5-1. (42)

i+
t4

The error caused by the approximation (42) is of the order At3
(Collatz, 1966), so of the same order as the error caused by the
approximation (38). In the sequel integral signs indexed by N,
refer to the values of the integral, computed using the trapezium
rule as just described. So (42) may be rewritten as

ti+1
J F(t) at = At/2 (F(ty) + F(t; 1)) 1=0,1,2,..,8-1, (43)
N
£
Since
€y 1-1 ka1
J F(t) 4t = Ej j F(t) dat, i=1,2,..,8, (44)
to k=0 tk

given (43), (44)

ti t

J F(t) dat = I F(t)dt+At/2(F(t;)+F(ty, .)), $=0,1,2,..,5-1. (45)
N N

to to
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From {45) it can be seen that each integral, using the trapezium
integration rule, can be computed recursively forward in time,
using successive eqguidistant function evaluations of the
integrand. All matrices appearing in the integrands of the
equations that make up the digital optimal regulator and tracker,
based on static optimization, and the recursions that make up the
digital optimal regulator and tracker based on dynanic
optimization, are a priori known, except from %, I' and Fv. As
shown in paradraph 3.2 & can also be computed recursively, forward
in time. Consider Fv’ given by (14d). From (43), (45) we have

ty i-1
fN F(t) dt = At/2 [F(to) + F(ty) + 2}2 F(tk)], i=2,3,..,8.  (46)
t, k=1

Note that for i=1 (43) holds. Denoting the value of Ty obtained
from numerical integration, using the trapezium rule, by Fg given
(14d), (46) we have

rﬁ(ti,to) = At/2 [@(ti,to)B(to)V(t0)+¢(ti,ti)B(ti)V(ti)

i-1
+2§: @(ti,tk)B(tk)V(tk)], i=2,3,..,8 (47)
k=1
and
N —
l—‘v(th—l’to) = At/2 [§(ti+1't0)B(tO)V(t0)+¢(ti+l’ti+l)B(ti+l}v(ti+l)

i
+2§: @(ti+l,tk)B(tk)V(tk)], i=1,2,..,8-1. (48)
k=1

Using (47, (48), (28) and (29) the following may be written

N

TV(

ti+1't0)
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Q(ti+1,ti)l‘§(ti,t0)+At/2[@(ti+l,ti)B(ti)v(ti)+B(ti+l)v(ti+1)] (49)

From (49) it follows that Fv(ti,to) can also be computed
recursively forward in time. Note that 2(t;,,,t;) in (49) was also
used to compute (35) recursively forward in time, Finally I', given
by (21), can be computed recursively forward in time in exactly
the same manner, When we skip all appearances of V in (49) it
holds for FN, the numerical value obtained for I' using the
trapezium integration rule.

Summarizing, the matrices Rf, M/, L', given by (l4c), (14b},
{18a}, and in case we are interested in the minimum cost, the
_matrices H’ and Jq: given by (14a) and (18b) which make up the
solution to the digital optimal regulator and tracking problem,
based on static optimization, can be computed off-line recursively
forward in time using the trapezium rule. The integrands are
avaluated at equidistant times ty. given by {32b), where At«l and
such that (33) properly approximates (la). Except for ¢ and Fv the
integrands contain a priori known matrices. ¢ 1is computed
recursively forward in time using (32¢) and (35), where (32c) is
approximated according to (43). Fv is computed forward in time
using (49) with the initial condition determined by (43). Using
this method the error made during each integration step At is of
the order At3.

Consider the digital optimal regulator and tracker (24), (27)
based on dynamic optimization. The egquivalent discrete-time
criterion matrices Re: @ /My and Ly, given by (23), (26), except
from & and I', contain a priori known matrices. ¢ can be computed
recursively, forward in time as described above, and so can T,
which is computed using (49), with the initial condition
determined by (43) where all appearances of V are left out. The
acquivalent discrete time system matrices (204) and (20e) are
simply the values of & and I at the end of the integration
interval. Again the error made during each integration step At is
of the order Ata.
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3.4 Computation of the c¢ost and the recursions that
constitute the digital optimal regulator and tracker
based on dynamic optimization.

The digital optimal regulator and +tracker for
stochastic systems and incomplete state information were derived
by Van Willigenburg and De Koning (1990b). They can only be
derived from dynamic optimization. The problems are certainty
equivalent, so the solution to the deterministic problems hold,
where the state is replaced by its estimate generated by the
discrete-time Kalman one step ahead predictor. Expressions for the
cost of the digital optimal regulator and tracker, explicit in the
system, criterion and covariance matrices, were derived. These
expressions can be easily computed using the previous results,
However, for convenience and since the problems are certainty
equivalent, in this paper we considered deterministic systems and
complete state information. Therefore we here present the
deterministic versions of the expressions for the cost of the
digital optimal vregulator and tracker based on dynanic
optimization.. The cost of the digital optimal regulator, for
deterministic systems and complete state information is given by

T
J=xosoxo. (50}

The cost of the digital tracker for deterministic systems and
complete state information is given by

N-1
T 2 T
waosox —2x0v0+x (t YHx (tf)+§: K~ (Kk k+1) (2Tk+Fk k+1) ~T Kk K

k=0
(51)

Finally we will treat aspects concerning the computation of the
recursions (24), (27). Equations (24b,c) which equal (27b,e)
constitute the solution of a standard discrete-time regulator
problem (Van Willigenburg and De Koning, 1990a). The solution is
written in the so called Joseph stabilized form which is known for
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its good numerical performance (Lewis, 1986, Bierman, 1977). Due
to computer round-off errors, errors in the computation of the
solution of a standard discrete-time regulator problem may arise.
In particular the symmetry and positive definiteness of the
matrices Sk, k=0,1,2,..,N-1 may be lost. A thorough study on this
subject 1is presented by Bierman (1977). The work considers
discrete sequential estimation, however this problem is dual to a
standard discrete-time regulator problem., Although the Joseph
stabilized form is to be preferred above other forms we should
mention here that computational methods based on matrix
factorization are superior (Bierman, 1977). We are currently
working on their implementation, however the examples presented in
section 4 are all computed using the recursions (24) and (27}.

4 Numerical examples

The digital optimal regulator and tracker, based on both static
and dynamic optimization, have been programmed by the author using
PC-Matlab. The software is available on request. In this paragraph
we will present a numerical example which demonstrates the
superiority of the result obtained from dynamic optimization,
considering accuracy. Furthermore, using yet another optimization
approach, we will demonstrate the correctness of the result
obtained from pboth static and dynamic optimization, using examples
with small horizon. For problems with large horizon the static
optimization approach becomes cumbersome (see paragraph 2.4). In
fact we ran out of computer memory. The first example however,
will deal with the computation of the state transition matrix,
which 1is equally important in both the static and dynanmic
optimization approach. Two approximations appear in the proposed
computation scheme to compute the state transition matrix of
system (la). We actually compute the state transition matrix of
system (33), which is an approximation of system {la), using the
approximation (35). However when the time varying system (la) is
commutative the state transition matrix for both systems is the
same at times ty. given by (32) (See paragraph 3.2). So we present
an example of a linear time varying system that is not commutative
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and of which an analytical expression for the state transition
matrix is known {Wu, Horowitz and Dennisson, 1975). Given the
linear time varying system {la) with

A(t) = ' {52)

The state transition matrix of this system is given by (Wu,
Horowitz and Dennisson, 1975)

exp(—t3) 0

2(t,0) = . (53)
t2exp(-t) exp (-t°)

Figure 4.l1a shows the values of the components of %(t,0) computed
using the exact sclution (53) and the numerical results based on
{33), (35) and (38) where At, given by (32} equals 0.1333. Figure
4.1b shows the result for At equal to 0.02. As can be seen if At
is sufficiently small the approximation is accurate.

The second example deals with a digital optimal regulator problem
for a multi input time-varying system, and a time-varying cost
criterion. Consider the system (1) with

10
X, = [ ] {54a)

0 10

(21 0

A(t) = ' {54Db)

2

| 5 2(t%~1)
((sin(3t) 1

B(t) = ' (54c)

-1 cos (3t}
ty 1 E=0.5, k=0,1,2,..,N-1, N=5 (544)
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then it can be easily seen that this system is not commutative,
Consider furthermore the regulator eriterion (2) with

( 2+sin(2t) 0 )
Q(t) = ' (55a)
L 0 2+sin{2t)
{ 2+cos(2t) 0 )
R(t) = ' (55b)
L 0 2tcos(2t)
1 0
H = . (55¢c)
0 1

We solved the digital optimal regulator problem (1}, {2}, (3)
{54), (55) using both static and dynamic optimization, where in
both cases At, the step size of the numerical integration and the
computation of the state transition matrix was taken equal to
0.02, From section 3 we know that dynamic optimization results in
a solution in feedback form (24). The minimum cost was computed
using (50). Given the feedback and using the equivalent
discrete-time system matrices (20d,e) which are part of the
solution (24), we simulated the response of the system (1}, (54)
at the sampling instants and computed the control. The result is
presented in the first two columns of table 4.1. Static
optimization does not directly result in a solution given in
feedback form. It presents the optimal control in an open loop
fashion given by eguation (17a). The optimal contrecl obtained from
static optimization and the corresponding response of system (1),
{54) at the sampling instants, as well as the value of the minimum
cost, computed from (13b), equals the result obtained from the
dynamic optimization approach, within four decimals (See table
4.1). Finally, given the <control obtained from dynanic
optimization, a Runge Kutta fifth and sixth order numerica:l
integration algorithm IVPRK, from the IMSL library, was used to
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numerically integrate the system (1), (54), and the cost (2). This
alternative computation allows us to check the system response at
the sampling instants, and the value of the mnminimum cost.
Furthermore it permits us to compute the system response in
between the sampling instants. All results are summarized in
figure 4.2 and table 4.1.

Finally we have used an alternative optimization procedure to

check if both static and dynamic optimization actually generate an’

optimal solution. Given the initial state and the system dynamics
(1a,b} the cost (2) is a complex function of the finite
dimensional control vector (11). So we can compute the minimum
cost using a routine that minimizes a general, possibly
discontinues function, of a finite number of variables. We used
the minimization routine ACPOL from the IMSL library and given any
control (11) we computed the cost, i.e. the function value, using
again the Runge Kutta fifth and sixth order numerical integration
algorithm. We initiated the minimization with the <¢ontrel
generated by the static and dynamic optimization approach, and
found no improvement. This clearly indicates that both the static
and dynamic approach have actually generated optimal solutions.

Consider the system (1) with
0
Xy = {56}

and where furthermore (54b,c) hold. Consider the criterion (5}
with

x,.(t) = 10 [sin(t) cos(t)]” S Eg<tst s, (57)

and where furthermore (55) and (3} hold. We solved this

digital optimal tracking problem where again At equals 0.02 using bo

static and dynamic optimization approach. The computations were
performed in -a way similar to those performed for the
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digital optimal regulator problem just described. The cost obtained
dynamic optimization was computed from (51). Again the =zolutions
obtained from both approaches are equal within four decimals, and
closely match the results obtained from numerical integration. The
results are summarized in figure 4.3 and table 4.2. Again no
improvement was found wusing the alternative optimization
procedure, which demonstrates that the optimal solution is foung.

In paragraph 2.4 the advantages of the result obtained from
dynamic optimization were discussed. We will finally show an
example that illustrates the superior numerical reliability of the
result obtained from dynamic optimization. As wmentioned in
paragraph 2.4 the dimensions of the matrices constituting the
solution of the static optimization approach (13), (17) depend
linearly on the horizon of the problem. The matrices in fact
reflect the system and cost behavior over the complete time
interval [to,tf]. Depending on the system dynamics (1) and the
cost criteria (2}, (4) within [to,tf], these matrices may become
i1l conditioned, which seriously affects the accurasy of the
solution. In case of the dynamic optimization approach the
matrices which are involved in the solutions (24), (27) only
reflect the system and cost behavior over one sample interval, so
will not as easily become ill conditioned. Consider the system (1)
with

0
% = (58a)
0 10
[ 4t-1 0
A(t) = . (58Db)
5 8t-2
sin(3t) 1
B(t) = ' {58¢c)
-1 cos{3t)
tk+l—tk=0.2, k=0,1,2,..,N-1, N=10 {(584d)
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and the criterion (5) where (3), (55) and (57) hold., Table 4.4
shows the solutions of this digital optimal tracking problem
obtained from static and dynamic optimization. The cost 1is
computed from (13b) and (51) respectively and At equals 0,001.
Furthermore the results obtained when both solutions are
numerically integrated using the Runge Kutta fifth and sixth order
numerical integration procedure are shown. Clearly the dynamic
optimization procedure performs superior,

5 Conclusions

Two numerical procedures, one based on static the other on dynamic
optimization, have been presented to compute the digital optimal
regulator and tracker for linear time wvarying systems. For two
examples it was shown that both procedures gave exactly the same
result. A third example demonstrated the numerical superiority of
the method based on dynamic optimization. considering computation
time, and the use of computer memory, the method based on dynamic
optimization is also superior. The method based on static
optimization was merely used as a check. Furthermore, using a
standard numerical integration algorithm besides an alternative
optimization procedure, we demonstrated the accuracy and
optimality of the solutions generated by both procedures. It is
believed that the digital optimal regulator result permits for the
first time the computation of an optimal perturbation controller
for non linear systems, controlled by computers, that have to
track reference trajectories, e.g. a robot performing a prescribed
motion or a batch fermentation process. The linearized dynanics
about the trajectory constitute a time-varying system. Until now
only the digital regulator for time-invariant systems could be
computed. The digital tracker, based on dynamic cptimization, has
never been considered in the literature. This is remarkable since
it can be applied in all situations where a linear systen,
controlled by a computer, has to track a reference trajectory,
e.g. a cartesian type robot performing a prescribed motion.
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OPTIMAL CONTROLLERS

FOR LINEAR SYSTEMS

Table 4.1

dynamic opt. static opt. Runge Kutta 5-6

time] control state control state control state
0.0 -1.2480} 10,0000 -1.9480 10.0000 -1.9480| 10.0000
=-14.1410| 10.0000 -14.1410 10.0000| =-14.1410} 10.0000
0.5 -0.3496 0.0711 =0.3496 0.0711 -0.3496 0.0711%
~3.4061 8,469) -3.4061 8.4691 =-3.4061 8.4682
1.0 1.8251| -1.6413 1.8581} -1.6412 1.8251§ -1.6414
2.6368 4.7682 2.6368 4.7682 2.6368 44,7672
1.5 -1.0015] =-1.1337 -1.0015} =-1.1337 -~1,00315¢ -1.1339
1,.5790 0.8508 1.5790 0.8508 1.5790 0.8481
2,0 -0.9235 ~0.9235 -0,9239
0.0600 0.0600 0.0327

cost 550,4561 550,4561 5650,4936
Table 4.2

dynamic opt. static opt. Runge Kutta 5-6

time| control state control state control state
0.0 -0.8113 0,.0000 -0.8113 0,0000 ~-0,8113 0.000
0.2843 10,0000 0.2843[ 10,0000 0.2843 10,000
0.5 0.1926) =0.1015 0,1926] -0.1015 0.1926; -0.1015
-1.1941 4,2786 -1.1941 4,2786 -1.1941 4.2783
1.0 6,2027| -0.5765 6.2027] -0.5765 6,.2027| -0.5765
5.4588 2.3027 5.4588 2.3027 5.4588 2.3023
1.5 $.0013 0.6965 0.0013 0.6965 0.0013| -0.6963
3.5828| -2.7626 3.5828} -2.7626 3.5828] -2.7646
2.0 ' 5.3612 5.3612 5.3610
-2.9382 -2.9382 -2.9536

cost 368.5580 368.5580 368.5674
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Table 4.3a

static opt. RK5-6

time| control | state state
0.0 -0.9632 0.0000 0.0000
-6.4736 10,0000 10.0000
0.2 1.0974 -1,1818 -1.1818
-4.5575 6.0092 6.0091
0.4 3.2240 -1.9977 ~1.9977
-0.7184 3.9991 3.9991
0.6 4,6468 -1.8908 -1,8908
3.0190 2.7031 2.7031
0.8 3.7794 -0.9995 -0.9995
4,3942 1.5027 1.5027
1.0 2.2346 0.0670 0.0670
3.0226 4.0488 4.0478
1.2 2.1357 0.6655 0.6655
0.181¢0 -0,2647 -0.2651
1.4 2.8524 1.1598 1.1598
-2.1026 -0.4498 -0.4519
1.6 2.,3304 1.4748 1,4748
-2.4548 -0.7348 -0,7497
1.8 -0.8097 2.9340 2.9340
-1.4447 -2.6357 -2,7874
3.0 1¢.1720 |-196.1720
) -16.6105 |~18.7363
cost =-2.1176e+7 640.859
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Table 4.3b

dynamic opt. RK5-6

time] control state state
0.0 ~-0.9632 0.0000 $.0000
-6.4735 10.0000 10.0000
0.2 1.0974 -1.1818 -1.1818
-4 ,.5575 6.0092 6.0091
0.4 3.2240 -1.9977 -1.9977
-~0.7183 3.9991 3.9991
0.6 4.6468 -1,8908 -1.8908
3.0190 2.7032 2.7031
0.8 3.7794 -0.9995 ~-0.9995
44,3942 1.5029 1.5029
1.0 2.2346 0.0699 0.0699
3.0226 0.4054 0.4053
1.2 2.1357 0.6656 0.6656
0.1810 -0.2629 =-0.2627
1.4 2,8524 1.1601 1.1601
-2.1026 -0.4383 -0.4394
1.6 2.3304 1.4755 1.4755
-2.4548 -0,6482 ~0,6565
1.8 -0.8097 2.9362 2.9363
-1.4447 -1,7499 -1.8347
2.0 10.1802 |-10.,1804
) -4,1806 -5.3686
cost 418,976 420.454
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CHAPTER 2

COMPUTATION OF TIME-OPTIMAL MOTIONS FOR AN INDUSTRIAL X~-Y ROBOT
SUBJECTED TO ACTUATOR AND PATH CONSTRAINTS

Abhstract

The time-cptimal control problem is solved for an industrial X-Y
robot, subjected to two types of actuator consgtraints, while the
motion is constrained to an arbitrary path. A numerical procedure
is presented to compute the solution. The robot dynamics include
both viscous and coulomb friction. Although not treated in this
paper, the extension of the solution and the numerical procedure,
to general rigid manipulators, including both viscous and coulomb
friction, is straight forward. HNumerical solutions involving
several paths are  presented. The solutions involve a
continuous-time state trajectory besides a continuous-time open
leop contrel. Since robots are controlled by digital computers a
digital tracking controller is used to track the computed state
trajectories. In a companion paper a recently developed procedure
to compute digital optimal tracking controllers is applied to the
soluticns computed in this paper, and experimental results with
the implemented digital time-optimal controllers are presented.

1. Introduction

Operations performed by robots are often characterized by the
fact that the desired robot motion is determined in space, for
instance in the case of spraying, cutting, or welding. However
freedom is left to how this motion should be executed in time,
8ince generally one wants the robot to operate as fast as
possible, the problem of executing a motion, specified in space,
called a path, in minimum time, is of vital practical importance.
Furthermere the solution of the problem may be used to select
paths, with equal starting and end points, according to their
minimum traveling time, in an attempt to solve the mninimum-time
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robot motion control problem. This problem considers the
minimum-time motion of a robot from one configuration into
another, while subjected to actuator constraints (Ailon and
Langholtz, 1985, CGeering et., al., 1986, Sontag and Sussman, 1986,
van Willigenburg, 1990a,b}, and possibly gripper, payload and
obstacle constraints (Shiller and Dubowsky, 1989).

The problem has been treated by several authors (Shiller and
Dubowsky, 1989, Bobrow, Dubowsky and Gibson, 1985, Shin and HMc
Kay, 19%85), but except for Shin and Mc Kay (1985), who consider
viscous friction, friction is not included in the robot dynamics.
Furthermere, only one type of actuator constraint is considered.
In practice however friction effects often play a significant role
in the dynamic behavior of robots, and two types of actuator
constraints are generally present, as explained in section 2 and
3. Furthermore a special situation ocours if the path is such that
at some part aill 1inks,' except for one, stand still. This
situation has not been given attention except by Shin and Mc Kay
(1985). The proof of the time-optimality of the solution in all
cases relied on a number of unproved properties of figures.
Finally numerical procedures to compute the solution for general
paths have not been presented.

We will present a solution to the time-optimal control problem for
an industrial X-Y robot, where the motion is constrained to an
arbitrary path and both types of actuator constraints are
considered. The robot dynamics include both viscous and coulomb
friction. A numerical procedure to compute the solution will be
presented together with numerical examples involving several
paths. We will discuss in detail the complications that occur if
all of the links, except for one, stand still. Finally we will
give a rigorous proof of the solution. Although not treated in
this paper the extension of +the solution and the numerical
procedure to general rigid manipulators, where both coulomb and
viscous friction may be included in the manipulator dynamics, is
straight forward.
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The solution to the problem involves a continuous-time state
trajectory and a continuous~time open loop control, Since robots
are controlled by computers, in a companion paper (Van
Willigenburyg, 1990d), a recently developed numerical procedure to
compute digital optimal tracking controllers (Van Willigenburg,
1990c) is applied to the time-optimal state trajectories computed
in this paper. This companion paper furthermore presents results
obtained with the implemented digital time-optimal controllers,
obtained in this wvay.

2, Actuators and actuator constraints

The industrial X-Y robot that we consider is actuated by DC
motors. The dynamics of a DC motor can be represented by

U=30LdI/dt + R I + K W, (1a)
T =KTI, (1b)
where

L : the induction of the motor (H),

R : the electrical resistance of the motor (Ohm),

I : the motor current (A),

U : the voltage applied to the motor (V),

w ¢ the rotation speed of the motor (rad/s),

T : torgque generated by the motor (Nm/rad),

K ! Voltage constant of the motor (Vs/rad).

From both a practical and a modeling viewpoint it will turn out
convenient to chose the motor-currents to be the control variables
of the robot. The capabilities of a DC-motor are mainly limited by
the heat generation and dissipation characteristics. The heat
generation is represented by the second term in {la), so Iis
proportional to the motor-current. DC-motor controllers are build
around a motor-current controller, which is used to 1limit the
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motor-current to prevent overheating. If we consider the current
controller to be ideal, which is a reasonable assumption (Van
Willigenburg, 1990d), and send our actual control signals to the
inputs of the ocurrent controllers we may consider the
motor-currents to be the control variables. An advantade of this
approach is that we only need the motor-current controller and
not other parts.

Very often, for instance in all references cited, dynamic models
of robots consider forces and/or torques applied to the robot
links to be the control variables. From {1) it can be seen that
the motor-current is proportional te the torgque. Since we assume
the transmission from the DC-motor to the robot to be ideal, the
force applied to each robot 1link 1is proportional to the
motor-current. Assuming the motor-currents to be the control
variables therefore does not affect the structure of the robot
dynamics.

We will adopt the assumptions mentioned above and consider the DC
motor-currents to be the controel variables. One actuator
constraint consists of the limitation of the absolute value of the
motor-current to prevent overheating

IT| =T (2)

max’
where Imax is the maximum absclute value of the motor-current,
which may be either positive or negative, where overheating will
not occur. In practice to control the motor-current the voltage
supplied to the DC motor is rapidly switched on and off, which may
be considered as varying the voltage supplied to the motor.
Clearly the voltage supplied to the motor is constrained to a
maximum determined by the value of the voltage supply. So another
actuator constrained is given by

101 = Upay 3)

where Umax is the maximum absolute value of the voltage supply
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which may be either positive or negative., Now in our case, and in
fact very often, we may neglect the first term in equation (1).
Doing so frem (1) it is obvious that

lw| = Oy {4a)
where
O = Umax/ K {4b)

Since V is used to control the motor-current, from (1) it is also
obvious that the extreme values of the motor-current (2) can only
be reached as long as

ol = w (5a)
where
Ynax = Upax = R Ipay! 7/ K (5b)

We will use constraint (5) although it 1is somewhat more
conservative than (4), since this allows for a constant bound (2)
for the motor-current, i.e. the control variable. However if the
bound {5) is considered to be a serious drawback, increasing the
value of the positive and negative voltage supply will increase
the bound (5) without violating other DC motor constraints.

Summarizing we will consider the motor-currents to be the control
variables of the robot and consider (2) and (5) as the actuator

constraints.

3, Dynamic model of the X-Y rohot

Very often (Ailon and Langholtz, 1985, Geering et. al., 1986,
Bobrow, Dubowsky and Gibson, 1985, Shiller and Dubowsky, 1989)
friction effects are neglected in robot dynamics. Experiments with
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our X-Y robot have demonstrated that friction effects play a
significant role in the dynamic behavior {Van Willigenburg,
1990d) . In our robot model friction is represented by both viscous
and coulomb friction. We assume that the motion of one link does
not influence the motion of the other 1link. This assumption is
valid if the links move perpendicular and if the friction in each
link is not influenced by the motion of the other link. Only the
latter assumption is not true in case of an X-Y robot. However,
accurate modeling of the friction in one 1ink, if the other is not
moving, is already impossible because of its partially stochastic
nature (Van Willigenburg 1990d). Therefore we assumed independent
dynamics for each link and used "average" values for the friction
coefficients. With these assumptions the following robot model is
cbtained,

1l

5

o Vg X, T S, 51gn(xp) + bxux' {6a)

p

s -v_y. -c¢ sign(f;p) + b u, {6b)

p Yy p 4 Yy

where xp represents the translation of the x-iink with respect to
a reference position, yp represents the translation of the y-1link
with respect to a reference position, Vo and vy are the viscous
friction coefficients, ¢, and Cy the coulomb friction coefficients
and finally b and by the sensitivity coefficients to the control
variables u, and uy, which are equal to the motor-currents, Both
bx and by depend on the mass of the link and the payload which we
assume to be known. We may write the dynamics (6) in state-space
form,

% 0 0 1 0 X 0 o 0
P P u
Yp |- 0 0 01 Yp [+ )0 O {ux] - t') Y 7
fp o 0 “Vy 0 ?p bx 0 V' cx51gn(¥p)
- 0 3
yp o o0 vy yp 0 by cyslgn(yp)

The actuator constraint (2) in terms of (6) and (7} becomes a
constraint on the control
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fu | = u ., (8a)
iuyl S (8b)
where

Ypax = Imax (8¢)

The actuator constraint (5) can be transformed into a atate
constraint on the state variable kp. S8ince we already assumed the
transmission from the DC motor to the robot to be ideal, *p is
linearly related to w,

kp =c (9)
where the constant c, is determined by the transmission from the
DC motor to the robot. The constraint (5) 1s therefore egquivalent
to

“"p' S S (10a)
where

Smax ~ “max / Cer (10b)
?nd Whax is determined by (5). The same constraint also holds for

yp the speed of the y-link,
Iifp: s s___. (10c)

The actuator constraint (8) limits the force (or torque) applied
to each link. This limitation will result in limitations of the
link speeds and accelerations, as demonstrated in the next
section. The state constraint {(10), which resulted from the
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actuator constraint (5), directly limits the link speeds. Although
we considered DC motors, other actuators generally present the
same constraints since usually both the torque and the maximum
speed of the actuators are bounded.

4. The time optimal control problem.

We consider a time-optimal contrel problem where the robot
dynamics are given by (6) and the state and control constraints by
{(8) and (10). Furthermore the state is constrained to follow a so
called prescribed path, defined by a parameterized curve.

x, = £(A), ¥ (11)

P = g(A), 0sA=A

P max’

where f and g are continuous functions of A with continuous first
derivatives. The path (11) describes the robot motion in space.
Many robot applications such as welding, spraying and cutting are
characterized by the fact that the desired robot motion in space
is known, but freedom is left to how this motion is executed in
time. Since in general the objective is to operate as fast as
possible we consider the problem of executing the motion in

minimum time.

In practice the functions £ and g in (10) are seldom directly
available. Usually the path is specified as a finite number of
coordinate pairs (xp,yp) which have to be passed in a given order.
In section 6 we will use cubic splines to interpolate the xp and
yp coordinates. So both f and g will be a piecewise polynomial of
order four, and therefore a piecewise analytiec function, that
possesges a continuous first derivative (De Boor, 1978).

Given the dynamics (6} and the control and state constraints (8),
(10} and (11) the time-optimal control problem comes down to
determining A in (11) as a non decreasing continuous function of
time, i.e.
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A(L) ostst ., (12a)
where

A(0) = 0, (12b)
A(tmax) = Amax' (12¢)
such that t . is minimal. Once (12) is known the time-optimal
trajectory is given by {10) and (12) i.e.

x, = £(A(E)) ostst ., (13a)
Yp = g{a(t)) ostst, . (13b)

Since A{t} in {12a) is a non decreasing continuous function of
time, minimizing tax iz eqguivalent to maximizing da/dt at all
times t, OStStmax. The solution to the timenoppimal control
problem will be based on converting the dynamics (6) and the
control and state constraints (8), (10) and (1l1) into constraints
on dr/at and a%ia/at?. At this stage we will adopt the following

notations

£,= Af/da (14a)

£,= a’f/ar’? (14b)

g,= dg/ax (14c)
3 .2

9,= a“g/da (14d)

A = daszat (14e)

X = aayzar? (14£)

The quantity A is referred to as the path velocity, since it
determines the speed by which the path is travelled in time.
Accordingly the quantity A is referred to as the path
acceleration. From (13) given the notation (14) we establish the
following facts determined by well known rules for differentiation
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X, = fli, (15a)
. « 2
Xy = £)4 + £537, (15b)
Yp = gyA, {15¢)
¥ o= g4 + g2 (15d)
o) 1 2™

From (7) it is obvious that a state trajectory determined by
xp(t), yp(t), tostﬁtmax can only be realized if both functions are
continuous and have continuous first derivatives. Now from (13)
and (15a,¢) and the properties of f, g, and A(t) we ocbserve that
indeed this is the case. Since the control is bounded, not all
state trajectories possessing these properties can actually be
realized. However we will show that by adjusting A(t) we can
always satisfy the state and control constraints (8), (10), and
(11).

From (15) ‘and (6} we obtain
" 12 s . .
fla + fzh = -V, fla C, 51gn(flh) + bx u, (16a)

- .2 . .
giA + g,A° = —vy gir = Sy sign(glh) + by uy (16b}

Note that since A(t) is non decreasing the path velocity A(t) is
everywvhere positive or zero. If we assume f1 and 9, everywhere
unequal to zero from (16) we obtain

S o ' - ;o
A= -£,3%8) - v A - o /180 b u/t, (17a)

etz
]

2 2 .
9pAT/9) T vy A = e /igl + by u /gy (17D}

Y

The state constraint (10) using (15) may be written as

o

= jsmax/fli (18a)
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As s /91 (18b)
We are now in a position to restate the time-optimal control
problem. The problem comes down to maximizing the path velocity A
at all t, Ostst . given the constraints {8), (17) and (18). Since
£, fl, f2, gl, and g2 only depend on A, equation (17) constitutes
two differential equations in A of which the evolution is the same
and uniguely determined by A(0) and i(o) and the values of the
control variables ux(t) and uy(t), OStstmax. Since the evolution
of both differential equations is the same only one of the control
variables can be chosen independently, the other (others) have to
be adjusted to stay on the path, The control constraint (8a)
restricts the admissible values of the path acceleration A(t) in

(17a),

~£,A%/8, - v A - e /If] - b /f1 s & =

~£,A%/8 - v A - o /IE ]+ Ibu st 1. (19a)
The same holds for (8b) and (17b),
_gziz/gl - Vyi - cy/lqli - byumax/lglls A=

-gziz/ql - vyi - e /1yl + by slayl. (19b)

The left and right hand side arguments in (19) besides known
constants only depend on A and A and (19) may therefore be written

as

a (r,R) s & s g (A4), (20a)
ay(a,i) s A s 3y(a,i), (20b)
where

% (A A} = -fziz/fl-vxi_cxflflt_bxumax/lfll' (202)
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3 = - .2 — '—

Byldid) = ~£A%/f,-v A-c /If I+ba /£, 1, (20d)
3 - - .2 - ‘_. -

ay(A,A) = -g,2"/9, Vyd cy/igli byumax/lgli, {20¢e)
) — .2 _ ._

BY(A,A) = -g,A"/9, vyt cy/lql|+byumax/igli. (20f)

Equation (20) not only restricts the admissible wvalues for the
path acceleration A, but also restricts the admissible values of
the.path velocity A. If for some a and A, «,>8, or a >B, the value
of A is inadmissible, In general if for some A the largest «,
exceeds the smallest B, A is inadmissible. For each A the
admissible values for A are determined by the equation

Oy (AsA) = Bnin(d:A) = 0. (21a)
where

Aoax = MAX(ax,ay} (21b)
Brin = MIN(B,.8,) (21c)

In {21) MAX refers to the maximum operation applied to the values
within the brackets and accordingly MIN to the minimum operation.
As just mentioned, for the X-Y robot (2la) is equivalent to

- A -
%, = By S0 %, - B, = 0. (22)

In general if the robot has n links (21a) is equivalent to n(n-1)
inequalities. Using (20) we may rewrite (22) as

py(A) =0 Ap,(i) = o0, (23a)
where

p,(A) =-ai’ -bi-c-a (23b)
p,(A) = ai® +b i +c-a, (23c)

123



COMPUTATION OF TIME-OPTIMAL MOTIOKS

where

a=1£% /£ -9,/ 94 ' (23d)
b=v, =v, {23e)
¢ = e /Il - cy/lgli (231)
a = (b /IE 1 + b /lg 1) w .. (239)

Equation (23) contains gquadratic inequalities which may be
visualized by parabolas (figure 4.1). Now since £, and g, are
continuous the robot is always capable of following a path if it
is moving slowly enough. In terms of the path (11) and the motion
along the path (13) this implies that each constraint in (23) must
allow values of the path velocity A within an interval [0,e),
where £ is a small positive constant. With this in mind we can
visualize the two possibilities by which (23) may put constraints
on A. From figure 4.1 we observe that the admissible values of A,
for each A, may consist of either a single interval, or of two
distinct intervals. If we draw the admissible values for A,
against A, two typical situations shown in figure 4.2 may arise.
If the admissible values of A, for each A, consist of a single
interval, the admissible region in figure 4.2 will contain no
"iglands of inadmissibility". Otherwise the admissible region will
contain at least one "igland of inadmissibility'. The border T(A)
of the admissible region in figure 4.2 according to (21) is
determined by

a__ (A,A) = B, (A,A) = O. (24)

max min

For cenvenience in the sequel, although sometimes formally
incorrect, we will assume the border T(A} to belong to the
admissible region. Since in practice (see section 6) we always
have to chose conservative bounds for the control variables this
assumption is legitimate. Note that the (aA,i) plane is often
referred to as the phase plane (Shin and Mc Kay, 1985},

The admissible and inadmissible region in figure 4.2 and 4.3
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illustrate the bounds on the path velocity A caused by the control
constraint {8), the dynamics (6) and the state constraint (11i), as
a function of A, Furthermore the constraints (6), (8} and (11)
caused the bounds (20) on the path acceleration 4. We may
represent these bounds in figure 4,3 by introducing

g o= disar. (25)

The quantity g in (25) represents the slope of the path velocity
avolution as a function of A. From {25) we have
di/dt

o= di/an = —— = A/ (26)
dar/dt

From (26) we ocbhserve that the admissible values of i at each point
in figure 4.3 are bounded by (20). At some points in figure 4.3
this is represented by arrows. The upper arrow at each peoint
represents l, the slope of the the path velocity evolution, when
the path acceleration i is maximized, given the bounds (20). The
lower arrow represents i when the path acceleration A is
minimized, given the bounds (20). At each point of figure 4.3 the
actual slope of the path wvelocity evolution should 1lie between
these arrows, HNote that on the border T(A) of the admissible
region in figure 4.3, the upper and lower arrow exactly overlap,
since there only one value of X, and because of (26), only one
value of p is allowed. If the only admissible value of i at some
point on T(A) points outwards the admissible region we call this
an inadmissible point on T(A), since from this point we always
move out of the admissible region.

Definition 4.1
An ipadmissible point on T(A), the border of the admissible
region, is a peint on T(A) which only allows a continuation,

forward in the A domain, outside the admissible region.

Definition 4.2
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Any point on T{A) that is not inadmissible is called an admissible
point on T(A).

In terms of figure 4.3 the time-optimal control problem now comes
down to maximizing the path velocity A, for each a, O=AZA_
where A should stay inside the admissible region and furthermore
everywvhere u via (25) is bounded by (20). Shin and Mc Kay (1985)
developed an algorithm to maximize the path velocity A in figure
4.3, given i(0) and i(tmax), and thereby s=olved the time-optimal
control problem if the bounds (10) are disregarded. However their
algorithm and the proof that it generates a time-optimal solution
relied on a number of assumptions based on a figure similar to
figure 4.3, which were not justified. We will present essentially
the same algorithm, however in a different rigorous and compact
form, which alsc allows extension to include the bounds (10},
Finally we will present a rigorous proof that the algorithm
generates the time-optimal solution. Like Shin and Mc Kay (1985)
we will 1limit the discussion to situations where no "islands of
inadmissibility" occur. However, our algorithm can be extended in
exactly the same manner as theirs to include situations were

"islands of inadmissibility" do occur,

5., Solution to the time optimal control problem

5.1 Solution to the problem with one actuator constraint

In section 4 we presented the time optimal control problen.
When we disregard the constraint (10} the problem can be converted
into one where the path velocity A has to be maximized for all a,
Oshshmax'
determined by (23) and shown in figure 4.3. Furthermore u defined
in {25), via (26) is constrained by (20), which in figure 4.3 was
represented at some points by arrows. The initial and final state

where A is constrained to be in the admissible region

of the system (7) have not been prescribed. However the state
constraint ({11) prescribes half of the state, i.,e. the values of
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x. and y,_ at the initial and final time, From (15a,c) we observe
that the initial and final value of the remaining state variables
x_and y, are determined by the initial and final value of the
path velocity A, since we assumed £,(0), 9,(0), £,(A,.. ) and
gl(hmax) unequal to zero. Usually we want the robot to stand still
at the beginning and end of the path. Therefore we prescribe the
initial and final path velocity to be zero. However without loss
of generality we may prescribe the initial and/or final path

velocity unequal to zero.

The solution of the problem is based on the following rule. When
travelling forward in the A domain, obviously to maximize A we
should maximize M, given by (25). From (26) we observe that u is
maximized by maximizing the path acceleration X. Therefore the
curve so constructed is called an acceleration curve, Travelling
bachwards in the A domaln obvicusly to maximize A we should
minimize (. Accordingly the curve so constructed is called a
deceleration curve. Note that travelling forward and backwards in
the A domain is equivalent to travelling forward and backwards in
time. When started at some point in the admissible region an
acceleration curve is no longer of interest if it leaves the
admissible region which happens at an inadmissible point on T{a).
It may happen that an acceleration curve does not leave the
admissible region. However then it is no longer of interest when A
exceeds A'max'

Dafinition 5.1

An acceleration curve is a curve started anywhere inside the
admissible region which travels forward in the A domain while u is
maximized. It ends at either the first inadmissible point on T(a)
it meets or at a point for which Azlmax'
By inspection of (20} and (21) an acceleration curve is
characterized by

(27)
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When started at some point in the admissible region a deceleration
curve is no longer of interest if it leaves the admissible region
which happens at an admissible point on T(A). It may happen that
a deceleration curve does not leave the admissible region, However
then it is no longer of interest when A<0.

Definition 5.2

A deceleration curve is a curve started anywhere inside the
admissible region which travels backwards in the A domain while u
is minimized. It ends at either the first admissible point on T(A)
it meets or at a point for which A=0.

By inspection of (20) and {21) a deceleration curve is
characterized by

A =a (28)

The next twoc lemmas are basic to the proof that the algorithm to
be presented in this paragraph, generates the time-optimal
solution. These two lemmas, although implicitly assumed, have not
been stated in previous work on this subject.

Lemma 5.1

Deceleration curves do not intersect,

Proof

consider the point where two deceleration curves intersect. The
slope of both curves, i.e. the value of u, at this point is
different. However this contradicts the fact that by definition u
on each deceleration curve is unigquely determined by its minimum

admissible value at each point.

Lemma 5.2
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An acceleration curve and a deceleration curve have at most one
point in common. If this point is not the end point of the
deceleration curve, on the right of this point the acceleration
curve lies above, on the left underneath the deceleration curve.

Proof

Consider (As,is) to be a point of both an acceleration and a
deceleration curve. Consider any point on the acceleration curve
on the right of this point i.e. (ar,iar), A >hg. Consider any
point (Ar,idr) on the deceleration curve. Now from (25) we have

Ar
Agp = Ag + J Poax(deA) da, (29a)
AS
and
AII:'
idr = is + J Hoin (A A) dA, (29b)
PtS

where umax(a,i) represents the maximum admissible value of u at
each point and accordingly umin(a,i) the minimum admissible value
point max(a,i)>umin(a,i) it
follows that Aar”Agpe Now consider any point on the acceleration
curve on the left of (A,hs), i,e. (Al,hal), Ay<ag. Consider the
peint (Al,idl) on the deceleration curve. Now from (25) we have

of g at each point. Since, except on T(A), i

As

Agy = Ag - J ooy (R,3) dA, (30a)

Ay

and
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AS
idl = A, - J umin(a,i) anr, (30b)
Ay
and since, except on T(A), umax(h,i)>um1n(k,i) it follows that

Aar<idr' Finally consider the intersection to be on T(A). BY
definition 5.2 a deceleration curve ends as soon as it reaches
T(A), so besides possibly ite starting point, it will contain at
most one point of T(A). Because of the previous an acceleration
curve cannot intersect both the starting and end points of a
deceleration curve so an intersection on T(A) has to be unique as

well.
Definition 5.3

A point (hl,il) in the (A,A) plane precedes another point (Az,iz)
if A, (Note the equality).

Definition 5.4

An acceleration or deceleration curve precedes another
acceleration or deceleration curve if the end point of the first
precedes the end point of the latter (Note that the end point of a
deceleration curve precedes its starting point).

Now after application of the foilowing algorithm, which consists
of three steps, we obtain the solution to the time-optimal control

problem.
Algorithm

1 From the initial values A=0 and A=0 start an acceleration
curve. If the acceleration curve ends on T(a) call this peoint
T(Aa). By definition T(A,) is an inadmissible point on T(A}.

2 From the final values A=A . and A=0 start a deceleration
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curve. If the deceleration curve intersects the acceleration curve
generated by step 1, it will be proved that this intersection is
unique, and the procedure ends. Else the deceleration curve ends
at T{(Ar). cCall this point T(A ). By definition T(A,} is an
admissible point on T{A).

3 Search the border T(A) from T(Aa) for the first admissible
point T(A,) on T(a), A <Apsd,. From T(A,) start a deceleration
curve. It will be proved that this curve will always intersect
exactly one acceleration curve generated by the algorithm so the
computation may be stopped once an intersection is found., From
T(lb) start an acceleration ocurve. If this curve ends at an
inadmissible point on T(A) this point becomes the new T(r,) and
this step is repeated. Else this curve crosses the deceleration
curve generated by step 2 and the procedure ends.

Theorem 5.1

The set of acceleration and deceleration curves generated by the
algorithm uniquely connects the initial and final conditions. This
connecting curve alternately <consists of acceleration and
deceleration parts and constitutes the =solution to the
time-optimal control problem.

Proof of uniqueness

The algorithm is such 'that it will never generate the same curve
twice., Therefore from lemma 5.2 we Know that if an acceleration
and a deceleration curve generated by the algorithm intersect,
this intersection is unique. The procedure ends if an acceleration
curve intersects the deceleration curve generated by step 2. This
acceleration curve is either generated by step 1 or step 3. If the
acceleration curve generated by step 1 intersects the deceleration
curve generated by step 2 these curves uniquely connect the
initial and final conditions. If the deceleration curve generated
by step 2 is intersected by an acceleration curve generated by
step 3, this acceleration curve started at T(A), where it was
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connected to a preceding deceleration curve., The sub proof below
proves that by the nature of the procedure this deceleration curve
alwvays intersects exactly one preceding acceleration curve
generated by the algorithm. If this is the curve generated by step
1 again a unigue connection is found, else the acceleration curve
started at T(2) where it was connected to a preceding deceleration
curve and we start all over again. Thereby we have proved that the
the acceleration and deceleration curves generated by the
algoxithm uniguely connect the initial and final conditions.

Sub proof

Note that by definition a deceleration curve can only intersect
preceding acceleration curves. Consider a deceleration curve with
starting point T(Al). Thig deceleration curve can only end at a
point which precedes A,, where 2, is the largest value of A, such
that T(A,) is a point where a preceding acceleration curve ends.
In other words the "latest" preceding acceleration curve ends at
T(A,). This is because by the nature of step 3 all points T(i),
A,SA<h, are inadmissible points on T(A) and by definition 5.2 a
deceleration curve ends at an admissible point on T(A}. So either
the deceleration curve intersects the Hlatest" preceding
acceleration curve, or it lies everywhere under it. If the latter
is the case the "latest" preceding acceleration curve cannot be
the curve generated by step 1 since then the bhoundary condition at
A=0 is not fulfilled. So the acceleration curve generated by step
1 must be intersected and since it has no preceding acceleration
curves except itself, the deceleration curve cannot intersect any
other preceding acceleration curves. Assume the deceleration curve
intersects a preceding acceleration curve which is not generated
by step 1 and starts at T(A), say T(As). If the intersection is on
T(A)} then this is the point where the deceleration curve ends and
therefore it cannot intersect any other preceding acceleration
curves., Else by lemma 5.2 on the left of the intersection the
deceleration curve lies above the acceleration curve and the
deceleration curve must end at some point T(A4), A4>h3. Note that
the algorithm is such that the A intervals covered by different
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acceleration curves generated by the algorithm are distinct.
Therefore the deceleration curve will not intersect any other
preceding acceleration curves. Finally if the deceleration curve
lies completely under -a preceding acceleration curve it will also
be completely under the "latest" deceleration curve that precedes
this acceleration curve, since they have the same starting point
on T(A) and since deceleration curves do not intersect (lemma
5.1). B0 the next possibility is an intersection of the next
preceding acceleration curve and we start all over again.

Proof of optimality

Let I be the unique solution generated by the procedure. Note that
I' can be divided into sections consisting of one acceleration
curve connected to one deceleration curve., All switching points
should bhe considered part of a deceleration curve. HNote
furthermore that the admissible region above each section is
either bounded by a=0, A=A oyt T(A) or I itself. If the solution
generated by our procedure is not optimal a curve '’ should exist
of which at least one point say, (Ao,io) lies above I'. Now
congider the section of I' which contains Ao+ Now one point in this
section must exist where I’ goes up from I' and one point where it
comes down on I since otherwise I’ violates the boundary
conditions or leaves the admissible region. Now either I/ goes up
from and comes down on the acceleration curve of the I section, I'/
goes up from and comes down on the deceleration curve of the I'
section, or I'Y goes up from the acceleration curve of the I
section and comes down on the deceleration curve of the I' section,
However, I'’ going up from the acceleration curve of the I' section
violates the fact that g on I' is maximized and I'’ coming down on
the deceleration curve of the I' section viclates the fact that N
on I’ is minimized, leaving no opportunities for I'’.

Figure 4.3 illustrates the fact that the time-optimal solution
consists of alternately acceleration (a) and deceleration (d)
parts, and that it is unique. According to Shin and Mc Kay (1985),
in case "islands of inadmissibility" appear in the phase plane
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(figure 4.2b) we compute all acceleration and deceleration curves,
i.e. the initial acceleration curve, the final deceleration curve,
and curves starting at all points on the borders of the admissible
region, where a transition from an admissible to an inadmissible
point on the border takes place. Because of lemma 5.2 in this case
a unique highest connection of the initial and final conditions
exist, again consisting of alternately acceleration and
deceleration parts, which constitutes the time-optimal solution.
This solution can be found by a backtracking procedure. Finally
Shin and Mc Kay (1985) proved the algorithm terminates in a finite
nunmber of steps iIf f and g are piecewise analytic functions. Since
we will use cubic spline interpolation to obtain f and ¢ the

latter is the case.

5.2 Solution to the problem with two actuator constraints

In the previous paragraph we solved the time optimal control
problem disregarding the state constraint (10) which resulted from
the actuator constraint (5). Using (15a,c) and since we assumed fl
and 94 une¢ual to zero the state constraint (10) can be converted
in a constraint on A.

A s 8(a) (31a)
where
S(a) = MIN(s_ . /1f 1,8 . /19,1) (31b)

where MIN refers to the minimum operation applied to the arguments
within the brackets. c1eafly the constraint (31} changes the
admissible region in figure 5.1 at points where S(A)<T{a) which is
illustrated in figure 5.1. Let us define the border of the new
admissible region by V{a) which we again assume to be part of the

admissible region. Obviously

V(A) = MIN(S(A),T{(A)) (32)
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Compared with the previous paragraph new situations arise when
V{Ar) is ecqual to S(A). In this case pu 1is not restricted to a
single value on V(a) and three typical situations occur
illustrated in figure 5.1. V{0.14) is an inadmissible point on
V{A) since the admissible values of u do not allow a continuation
in the admissible region. V(0.35) and V(0.5) are admissible points
on V{A) since the admissible values of u allow a continuation
within the new admissible region, where V{0.,35} allows a
continuation on the border V(A). Obviously since the objective
still is to maximize A, in the case of V(0.35) we want to stay on
the border V{(A). However in that case p generally no lIonger takes
on an extreme value. If we extend the notion of an acceleration
curve the procedure described in the previous paragraph also
solves the time-optimal control problem including the constraint
(31) when we replace T{A} by V(A).

Definition 5.5

An acceleration curve 1is a c¢urve started anywhere in the
admissible region which travels forward in the A domain while u is
maximized, except when on the border V{A). On the border V{iA) u is
chosen to stay on the border (V{A), 0.25<2<0.,5 in figure 5.1}.
When this is no longer possible either this is an inadmissible
point on V(A}, where the acceleration curve ends (V(0.14) in
figure 5.1), or the acceleration curve continues inside the
admissible region where i is maximized again (V(0.5) in figure
5.1}y. If the acceleration curve does not meet an inadmissible
point on Vv{aA) it ends at the point where ASAoxt
Given this definition all lemmas and theorems are still valid
where the old border of the admissible region T(A) is replaced by
the new border V{(A). Only the proof of optimality of theorem 5.1
should be slightly adjusted. An acceleration curve, if it stays on
the bhorder V(A)=S{A), is no longer characterized by the
maximization of p., However the going up from an acceleration part
of I'y if it stays on the border V(a)=S(a), still leads to a
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contradiction, since we move out of the admissible region in this
case, Figure 5.1 illustrates that the solution again consists of
alternately acceleration {a) and deceleration {(d) parts.

6 Computation of time-optimal solutions

6.1 The numerical algorithm

We have developed software to compute the time-optimal
solution where f and g, which constitute the path (11), are
obtained by cubic spline interpolation of a set of coordinate

pairs
(xk'yk) k=0,1,2,..,N, (33)

which constitute prescribed values of xp(tk) and Yp(tk)' where t,
are undetermined but with the property that typq>ty. SO (33)
constitutes a set of points in the X-Y plane, which have to be
passed in a given order. The function f is obtained by cubic
spline interpolation of the sequence

x(2y) k=0,1,2,..,N {34a)
where

x(hy) = X, (34b)
Ag = O,

Appr = M = /N {34c)

Accordingly y is obtained by cubic spline interpolation of the

saduence

y(hk) k=0,1,2,..,N (35a})
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where
Y = ¥ (35b)

We chose BAkima’s cubic spline interpolation since it combats
wiggles in the interpolant (De Boor, 1978), and wiggles in the
path are generally undesirable. We used the routine CSAKM from the
IMSL library to perform this interpolation. Figure 6.1 shows the
points which were used for the example presented in this section,
and the order in which they should be passed. Obviously from
figure 6.1 this is just an arbitrary example. We are able to deal
with any path obtained from a limited set of prescribed coordinate
pairs (33).

We will now describe in detail how the computation of acceleration
and deceleration curves as well the search for a next admissible
point of V(A) is performed numerically. We consider the situation
where two actuator constraints are active as described in
paragraph 5.2. and where no "islands of inadmissibility" occur,
i.e. for each A we consider the border with the smallest value in
figure 4.2b. The computation is largely based on the numerical
integration of (27) and (28) forward and backwards in time.
(An,in,tn) will refer to a point in the (a,A) plane which is
reached at time t,. The numerical integration will be evaluated at
equidistant times th i.e.

tn+1—tn=At, (36)
for acceleration curves and the search procedure and

top1E AL, (37)

for deceleration curves where At is a positive constant. For our
application we chose

At = 1mS.
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The numerical computation of an acceleration curve by definition
starts with n=0 so (Ao,io,to) is the starting point of the curve.
The computational procedure consists of nine steps.

1 From (An,in,tn) numerically integrate (27) forward in time
and evaluate the result (An+1'hn+1’tn+1)'

A stop the acceleration curve at (A

2 If Al‘).'l"l> max

n’An’tn)'

3 Compute T(An+1), S(An+1) and V(An+1).

4 If 1n+1<V(An), set n=n+1l, and goto 1

23 If V(A l) gtop the acceleration curve at (An,in,tn).

n+1? =T,

6 Numerically integrate (28) from (An,in,tn) forward in time
and evaluate the result (An+1'kn+1’tn+1)'

7 Compute S(An+1).

8 If . hn+1>s(hn+1) stop the acceleration trajectory at
(A et

9 Set hn+1=S(An+1), n=n+l1l and gotec 1.

Step 1, 2 and 3 are the general steps taken. Step 4 involves the
usual continuation if we are within the admissible region. Step 5
involves the situation where we reached an inadmissible point on
the border V(A)=T(i). Step 6 and 7 are taken if we reached a point
on the border V{A)=8S(A). Step 8 involves an inadmissible point on
the border WV(A)}=S(A), while step 9 involves the continuation on
the border V(a)=5{a).

The numerical computation of a deceleration curve by definition

starts with n=0 so (Ao,io,to) is the starting point of the curve.
The computational procedure consists of six steps.
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1 Numerically integrate (28) from (hn,in,tn) backwards in time
and evaluate the result (Rn+1'an+1'tn+1)'

2 If A,,,<0 stop the deceleration curve at (An,in,tn).

3 Compute V(An+1).

4 If A,,,>V(A,) stop the deceleration curve at (A_,i ,t.).

5 If A is inside the A domain of an acceleration ocurve

n+l
search for the nearest computed value A’ in this domain and

consider the point (a’,A’) of the acceleration curve. If
in+1>i' an intersection is found and the deceleration curve
ends at (An,hn,tn).

6 Set n=n+l1 and goto 1

Step 1, 2 and 3 are the general steps taken. Step 4 involves the
reaching of V{a). Step 5 involves the situation where a connection

to an acceleration curve is found.

The search for a next admissible point on V(A)} is performed by the
following procedure consisting of nine steps. By definition we
start searching at n=0 so at (Ao,io,to), where iOmV(AO).

1 Rumerically integrate (27) from (An,in,tn) forward in time
and evaluate the result (Rn+1’ln+1’tn+1)‘

2 I1f hn+1>lmax stop the search,.

3 Compute T(An+l), S(An+1) and V(an+1).

4 1f An+1<v(an+l)' (Rn,hn) is the next admissible point on
V(A).

5 If V(An+1)=T(An+1) goto step 10.
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6 Numerically integrate (28) forward in time from (A_,3 ,t )

and evaluate the result (An+1’hn+1’tn+1}

7 Conpute S(An+1).
8 If in+1<S(An+1)' (hn,in) ls the next admissible point on
V(A).

9 Set Rn+1=5(ln+1).

10 Set n=n+1 and goto 1.

Step 1, 2 and 3 are the usual steps taken., Step 4 involves a
continuation from the border inside the admissible region. Step 6
until 9 are taken if the border V({A}=S(A).

Since we obtain a2 and A through numerical integration of equation
(27) forward and (28) backwards in time we immediately have
available A(t) and A(t). Vvia (13) and (15a,c) we therefore have
available the state trajectory of the system (7). This state
trajectory will be the basis for computing a digital controller in
the companion paper (Van Willigenburg, 19904). During the
numerical integration the values of the continuous open loop
control may be obtained using (17), as long as we do not move
along the bhorder V{a)=S(A). In this case {27) or (28) holds and
from (20), (21) we observe that always one of the control
variables takes on an extreme value. This result is intuitively
expected since to stay on the path only one control variable may
be chosen independently. If we are moving on the border V(A)=8{A)
f# and A are not determined by (27) eor (28). In this case the
control may be approximately obtained assuming

A _=(A

n —in)/At {38)

n+l

The routine IVPRK from the IMSL library, which uses a Runge Kutta
fifth and sixth order method, is used to perform the numerical
integration. However at some intervals error conditions are
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obtained since the equations (27), {28) become stiff. Then an
Euler integration routine was used where very small steps were
taken to insure a reasonable accuracy. We should mention that the
use of the Euler routine seriously decreases the computational
efficiency. From (20) which via (21) deternines Opax and B in
(27), (28) we observe that (27), (28) become stiff if £, or g,
becomes large or if hoth £, and g; become close to zero.

In chapter 5 we assumed both f1 and 94 everywhere uneqgual to zero.
In practice however, often f1 or g, becomes zero at intervals or
isolated points. If f1 becomes zero from (10), (15} we cbserve that
{31) is completely determined by Igll. From (16a) we obtain

12

A2 = 1 (39)

xumax/fzi’
and when 9, becomes zero (31) is completely determined by lfli and
from (16b) we have

+ 2

A = bou /g, (40)

Y max

If £,=0 at an isolated point, £, is wunegual to zero, (20b)
determines the bounds on A, (27), (28) are well defined, and from

(39) we have

T(A) = ;bxumax/le”a. (41)
If only g,=0 at an iscolated point, 9, is unequal to zero, {20a)
determines the bounds on i, (27}, (28) are again well defined, and
from (41) we have

T(A} = [b 2, (42)

yumax/gz
Since we treat the case of isolated pointsg one may wender if (41},
(42) result in a discontinuity of T(A}, because this would have
serious consequences for the numerical algorithm. However this is

not so.
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Lemma 5.4
Consider £{a,) to be an isolated point where £ (A,)=0. Then

lim T{A) = T(r
Aaho

o)

Proof

From (42) we have

T(A,) = Ibou__/E (A YA (43)
4] X Tmaxs 20

Since f is such that £, is continuous and T(Ay) is an isolated

point where £, {2ag5)=0 if AR, fl(A)eo. From (l1l6a) given £, (a)=0,
we obtain

o’

(-bu  ~f (MAZ) /1L ()1 = & = (b - (MA%)/1E, (A) ] (44)

Obviously if A>|b_u /fz(;m“2

wnax the upper and lower bound both g¢go
to either o or -« as £,(2}-0. Together with (16b) this leaves no
admissible values for i. If i<lbxumax/f2(h)li/a the upper bound
goes to +eo and the lower bound to -« as fl(A}eo, with (16b)
leaving admissible values of A,
For an isolated point g(Ao) where g, (A,)=0 we obtain analogous
results. Although T(A) is continucus it may change rapidly arocund

these points, which may cause numerical problems.

Now consider the situation where f1=0 over a c¢losed interval
[Agraq]. Then for each A e (AO,Al) fz(a)=0 and (16a) imposes no
bounds on A or A. Therefore T{A) does not exist which can be
regarded as T(A)=w. Therefore V(A}=8(A) which by inspection of
(10), (15}, and (32) is completely determined by Igll. If A eqguals
A, or Ay this equals the situation of isclated points described
previously. For g,=0 over a closed interval we obtain analogous

results. From this we observe that the border V(i) at AO and Al,

142



COMPUTATION OF TIME-OPTIMAL MOTIONS

the edges of the interval, may jump from T{A) to S(A), generally
causing a discontinuity. These discontinuities present one major
problem illustrated in figure 6.2. Assume from V(0.4) until the
discontinuity of WV(A), at A=0.5, V(a) consists of inadmissible
points on V(A). To obtain a proper solution ¥ (A) should be defined
as the smallest value of A involved in the jump, which constitutes
an admissible point on V(A)}) from which an acceleration and
deceleration curve should be started. In figure 6.2 therefore
v(0.5)=3.0 is an admissible point on V(a). It therefore is
essential to continuously search the border for the next
admissible point on it, i.e. to start the next integration step of
the search procedure at the value of A where the previous step
ended. Searching from V(0.4) in figure 6.2, V(0.48) will then be
recognized as the first admissible point on V(A), since taking a
time step At the numerical integration of (27), and possibly (28),
ends inside the admissible region. This 1is symbolically
represented by the arrow in figure 6.2. Our numerical algorithm
therefore recognizes V(0.48), somewhat to the left of V(0.5), as
an admissible point on V{A) so that the discontinuity in V(a) is
properly dealt with., In fact we ran into this problem in an early
stage of the software development when we searched the border
discontinuously.

Finally if simultaneously f1=0 and g,=0 this amounts to a
situation where the path demands the robot to stand still as can
be seen from (15)., Since in this case both (27) and (28) are
undefined the algorithm is no longer well defined, so we do not
allow this to happen. Note that since the robot is forced to stand
still, we may split up the path at this point, and by demanding
the final path velocity of the first path, and the initial path
velocity of the second path to be zero, we can force the robot to
stand still.

Summarizing we do allow £, and g, to be zero, at intervals or
isolated points but not simultaneously. Furthermore since we want
to prescribe the initial and final state of the robot (6), from
{15a,c) we see that we do demand a path for which fl(D), gl(O},
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fl(hmax) and gl(hmax) are unegqual to zero. In that case i(O) and
i(tmax) and (11} uniguely determine the initial and final state of
the robot (6).

We have demonstrated that the numerical computation of the
algorithm works in all practical situations. The main problem with
the numerical computation of the algorithm is that the equations
(27), (28) may be stiff at some intervals. This causes the
numerical integration to become computationally expensive and less
accurate. This problem can be partially overcome by adjusting the
parameterisation (34), (35), i.e. by adjusting the values of Ay

6.2 Numerical examples

From the path given in figure 6.1 we computed the
time-optimal solution presented in figure 6.3, The following
parameter values were used which apply to an industrial robot (Van
Willigenburyg, 199%04) if xp, yp, the 1link translations are

expressed in cm., kp, §p the link velocities in cm/s and ip, 99,
the link accelerations in cm/sz,

v, = 0, (45a) vy = 3.0, (45b)
c, = 70, (45¢) c, = 96, (45d)
b, = 70, (45e) b, = 88, (45£)
u .. = 5.00, (45¢) Spay = 1000 (45h)

The bound (459) should be chosen as high as possible, on the other
hand leaving enocugh room for control deviations which will ococur
due to uncertainty and imperfect modeling. It therefore should bhe
experimentally determined and will always be less than the real
achievable value.

To check the accuracy of the time-optimal state trajectories,
computed according to the numerical algorithm presented in section
5, where the state is available at equidistant times tk' we
computed the time-optimal control from these state trajectories
and the robot dynamics (6) using the following approximations
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Xo(ty) = (Rp(ey,q) = %,(8,)) 7 AT, (46a)
Vplty) = (Fpltyyy) - ¥,(E)) / AT, (46b)
where

AT = ¢, . - &, vk. (47)

Using (6) and the approximation (46), (47) we obtain for the
control

ux(tk)=1/bx[(kp(tk+1)-kp(tk))/AT+vxkp(tk)+cxsign(kp(tk))], (48a)
uy(tk)=1/by[<&pctk+l)-ipftk)>/AT+vy&p(tk)+cysiqn(9p(tk))]- (48b)

The time-optimal controls presented in figure 6.3e,f were computed
according to (47), (48) where AT+10mS. From fiqure 6.3e,f we
observe that everywhere one control variable takes on an extreme
value. This result is expected since from figure 6.3c,d we observe
that the velocity bound (45h) is never active and therefore
everywhere i takes on an extreme value.

A second numerical example is presented in figure 6.4 and 6.5. The
values of the parameters in (45) again hold, except for (45g)
which is replaced by

oy = 8.00. (49)
The time-optimal control was again computed according to (47),
(48) with AT~1omS, In this example we do observe the velocity
bound (45h) being active. In the companion paper (Van
Willigenburg, 1990d) we will treat the design and implementation
of digital optimal tracking controllers, based on these two
solutions, and present experimental results,
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7. Conclusions

We solved the time-optimal control problem for an industrial
X-Y robot subjected to two types of actuator constraints, while
the motion is constrained to follow an arbitrary prescribed path.
We included both viscous and coulomb friction in +the robot
dynamics. We gave a rigorous proof of the solution which, opposed
to earlier work on this subject, does not rely on unproved
properties of figures. The actuator constraints that we considered
are constraints which generally appear in practice. One of thenm
constitutes a limitation of the forces (torques) applied to the
links, the other a limitation of the speed of the links. The
latter constraint has not been considered before in the
literature., Furthermore for the first time we have presented and
demonstrated a numerical procedure to compute sclutions for an
arbitrary path. Although we considered an X-Y robot the extension
of the solution and the numerical procedure to general rigid
manipulators, where both coulomb and viscous friction may be
included in the manipulator dynamics, is straight forward. Finally
we have demonstrated that a "special situation", which may occur
in a general problem, does not affect both our solution or the
numerical procedure to compute it. This ‘"special situation"
generally did not receive attention in the literature. In a
companion paper (Van Willigenburg, 1990d) we will present the
design and implementation of digital optimal tracking controllers
which will be used to track the time-optimal state trajectories
computed in this paper,
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Fig 6.3¢: Time optimal solution
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Control in Ampere

Control in Ampere

Fig 6.3e: Time optimal solution, control X-link
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fig 6.4: The path
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L.G. VAN WILLIGENBURG

DESIGN COMPFUTATION AND TMPLEMENTATION OF DIGITAL OPTIMAL TRACKING
CONTROLLERS FOR CARTESIAN ROBOTS

Abstract

Based on the recently developed digital optimal regulator and
tracker for linear time-varying systems we will treat the design,
computation and implementation of digital optimal tracking
controllers for cartesian robots where friction is modeled by both
viscous and coulomb friction and where the influence of gravity is
included. The design is characterized by the fact that no
approximations are made, i.e. the inter-sample behavior is
explicitly considered and therefore "large" sampling times are
allowed., Sampling times will vary from 60 to 200mS, while
generally sampling times larger than 20mS are considered too large
for robot control. Experimental results obtained with implemented
digital controllers on an industrial cartesian X-Y robot are
presented which demonstrate that the accuracy is not seriously
affected by the choice of "large" sampling times, Two methods of
implementation will be presented. One concerns the "direct!
implementation of +the digital optimal tracker, which is in
feedback form. The other presents the control to the system in an
open loop fashion and uses a digital optimal perturbation
controller +to control deviations from the trajectory. The
practical advantage of the latter are discussed.

1. Introduction

The design of digital controllers for cartesian robots has
not very often been considered in the literature. Probakly this is
because cartesian robots have "simple dynamics". Since the links
of a cartesian robot move perpendicularly the motion of one link
does not influence the motion of the others so the dynamics of the
links are decoupled. Furthermore if one neglects friction which is
a usual assumption (Asada and Slotine 1986) the dynamics of each
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link are determined by a simple second order linear differential
equation. However, since cartesian robots are "easy" from the
point of view of dynamics and they are also "easy" from the point
of view of kinematics, and since the links move parallel to the
axes of a cartesian frame, they are "easy to control", i.e. they
allow for the use of relatively simple controllers which demand
only a relatively small number of on-line computations. So from a
practical point of view cartesian robots may be very attractive.

In this paper we will consider cartesian robots where friction is
modeled by both viscous and coulomb friction and where we also
consider the effect of gravity. We will present a procedure to
design digital optimal tracking controllers for such robots.
Throughout the paper we assume the desired robot motion as a
function of time, to be known in advance. The design procedure is
characterized by the fact that it explicitly considers the
inter-sample behavior., This allows for the choice of "large"
sampling times, which 1is important since in the case of robot
control the computational burden on the computer is generally
high. Common design procedures only consider the system behavior
at the sampling instants and therefore demand "emall" sampling
times (Ackermann, 1985, Astrom and Wittenmark, 1984, Franklin and
Powell, 1980). Even if the sampling time is "small" it is still
favorable to consider the inter-sample behavior explicitly since
the continuous-time behavior is of actual interest. To demonstrate
our design procedure we will design and compute digital tracking
controllers for an industrial cartesian X-Y robot and present
experimental results obtained after their implementation . The
controllers will be computed for time-optimal motions of the X-Y
robot computed by Van Willigenburg (199Ca) so that in these cases
one may consider the result to be a digital time-optimal
controller,.

The ocutline of the paper is as follows. In paragraph 2.1 we will
introduce the dynamics of a general rigid ocartesian robot
including gravity and friction. Based on identification
experiments we will present a dynamic model of the industrial X-¥
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robot in paragraph 2.2. In section 3 we will present the design
procedure based on both the digital optimal regulator and tracker
result presented in paragraph 3.2. In paragraph 3.3 we will
present numerical examples and in paragraph 3.4 experimental
results obtained with the implemented controllers. Finally section
4 contains the conclusions.

2. Dynamics of cartesian robots

2.1 Dynamic model of a rigid cartesian robot with friction

We will consider a rigid cartesian robot, i.e, a robot with
rigid links that move in perpendicular directions and where the
forces applied to the 1links are considered to be the control
variables, If for instance the links are actuated by current
controlled DC motors and the transmission is considered to be
ideal the motor current is proportional to the force applied to
the 1links (Van Willigenburg, 1990a). In paragraph 2.2 we will
demonstrate that for the X-Y robot this is a reasonable
assumption. Since the links move in perpendicular directions the
motion of one link does not influence the motion of the others and
we may consider the dynamics of each link separately. We will
agaume each link suffers from both viscous and coulomb friction,
which is a reasonable assumption for the X-Y robot treated in
paragraph 2.2, Finally some links are considered tc move in the
direction of gravity. Using the above assumptions the dynamics of
such a link become

Xy = v kc - ¢ sign(kc) + bu - g, (1)
where X, represents the translation of the link with respect to a
reference position , v is the viscous friction coefficient, ¢ the
coulemb friction coefficients and b the sensitivity coefficient to
the contrel variable u which is the actuation force of the link,
Finally g represents acceleration due to gravity, the direction
being opposite to a positive translation. Note that we can
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compensate for dgravity by a constant value of the control. By
making a change of control variable from (1) we obtain

X, = =V, ~-¢ 31gn(xc) + bu/ (2a)
where
u =u+ a/b (2b)

Equation (2) represents a general description of the dynamics of
each link, where the second term of (2b) should be dropped if the
link does not move in the direction of gravity. By inspection of
(2) the dynamics of each link are of the form (2a). Therefore, and
since the dynamics of each link are decoupled it ocan easily beseen
that all ideas put forward for the X-Y robot can easily be
extended to cartesian robots with more links.

2.2 bynamic model of an X-Y robot

The industrial X-Y robot that we consider as an example is
actuated by DC motors. Since both 1links move in a direction
perpendicular to that of gravity from {1) we obtain the following
dynamics for the X-Y robot,

s

b Vg xp - Qo sign(xp) + byu, (3a)

Y, = =V, ¥

- ign(y 3b
o v cy 51gn(yp) + bou, (3b)

P Yy

where xp represents the translation of the X-link with respect to
a reference position, Yp represents the translation of the Y-link
with respect to a reference position, Vo and Vy are the viscous
friction coefficients, o, and Oy the coulomb friction coefficients
and finally b, and by the sensitivity coefficients to the control
variables u, and uy, which represent the motor-currents. Both b,
and by depend on the mass of the link and the paylcad which we
assume to be Known. We may write the dynamics (3) in state-space
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form,

X 0

AN BN 1 N S e

Yp |= H | Yo [+ : {ux]- N (4)
fP ¢ 0 -V, 0 ?p bx ] Y stign(fp)

yp 0 o —vy 0 yp 0 by cys gn(yp)

We will explain the choice of this model, and then present the
parameter wvalues obtained from identification experiments. The
model assumes the transmission from the motor to the robot links
to be perfectly rigid. Furthermore the motor current controllers,
to which the actual control is applied, are assumed to be ideal
{Van Willigenburg, 1990a). Experimental results have demonstrated
that the latter is a reasonable assumption. Figure 2.1 shows two
characteristic step responses of the motor current controller.
Since we will use a piecewise constant control and sampling times
from 60 to 200mS, the input to the motor current controllers will
consist of steps of between 60 and 200mS. Therefore the transient
behavior shown in figure 2.1 may very well be neglected.

Experimental results with the X-Y robot revealed that friction
plays an important role in the robot dynamics. Figure 2.2a shows
speed responses of the X-link while the motor current u, is kept

at a certain constant value u, for several initial conditions.
(o
The fluctuations in the speed responses are mainly caused by

backlash which we have not included in the model. Since the speed
responses, apart from the fluctuations caused by backlash, are
almost flat, from the dynamics (3a) we observe that a) the coulonmb
friction in the positive direction is compensated for by the

constant wvalue u_, of the control and b) visecous friction |is
¢
negligible. So we have

v, = 0. {5)

Figure 2.2b shows a characteristic speed response of the Y-link
together with an exponential approximation, when the motor-current
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uy is kept at a certain constant value uy . When we approximate
(o]

the speed-response by the exponential from the dynamics (3b) we
conclude that a) the coulomb friction in the positive direction is

compensated for by the constant value uy of the control b)
c

viscous friction is present and determined by the exponential
approximation in figure 2.2b, since if the coulomb friction is
compensated for by the control, the second and third term on the
right of equation (3b) cancel out. So from figure 2.2b and
equation (3b) we have

v, = 3.0, (6)

From figure 2.2 we also obtain the values of the control u,, and
[

u necessary to compensate the coulomb friction. They have been
c +
found through experiments and where chosen such that after an

initial velocity the links kept just moving in both the positive

and negative direction, while applying u, and uy‘ with
c C
appropriate sign.

(7)

=
1l

=
L]

(8)

=

Il

jay
=

Figure 2.3a shows a speed-response of the X-link while the control

is kept at its maximum value,

W, = U {2a)
where
Uhax™ 10.0. (9b)

From (4} and (5) the response is expected to be a stralaht line.
The deviations from the straight line are primarily caused by
backlash. The sensitivity b to the control u, may be obtained
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from (4) and {7),

b, =s_/(u.__-u, ) (10)
[s]

where s is the slope of the stralght line in figure 2.3a,

s, = 630 . {11}

From (4) and (5) we also have

¢, =b, u_ . (12)

Summarizing, given u u and s given by (7), (9b) and (11)

max’ “x

C
using (10) and (12) we obtain the parameter values bx and Cy of
the X-link,

b, =170, (13)

c, = 70 . . {(14)
Figure 2,3b shows the speed-response of the Y-link while the
control is kept at its maximum value

u_ =

v W (15)

where L. is given by (9b). Consider sy to be the slope of the

speed response in figure 2,3b at t=0. From figure 2.3b we cbtain

sy = 783, (16)
Since at t=0 the speed and therefore. the viscous friction
occurring in the Y-link are ecual to zero we can derive the
parameter values bY and cy in exactly the same manner, i.e. using
equations (7),(8),..,(12) where the index x must be replaced by
the index y. Doing so from (16) we obtain
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b, = 88 , (17)

96 . (18)

o}
1l

3. Digital time-optimal controller design and implementation

3.1 Introduction

The dynamic model (4) of the X-Y robot, apart from
coulomb friction, constitutes a 1linear model., In section 2 we
demonstrated that coulomb friction can be compensated for by the
control, leaving a linear model. The recently developed digital
optimal regulator and tracker (Van Willigenburg and De Koning
1990a,b , Van Willigenburg, 1990b) for linear systems were used to
compute digital controllers for the X-Y robot. Usual digital
controller designs (Ackermann, 1985, Astrom and Wittenmark, 1984,
Franklin and Powell, 1980¢) are based on approximations, and
therefore demand "small" sampling times since +they do not
explicitly consider the inter-zample behavior. In the case of
robot control this demand often leads to computational problemns
(Vukobratovic and Stokic, 1982). The digital optimal regulator and
tracker were derived without making any approximations, and
therefore do not demand a "small" sampling time. We will use the
digital optimal tracker result (Van Willigenburg and De Koning,
1990a,b) to design tracking controllers for the X-Y robot. Since
the digital optimal tracker is given in feedback form, we may
directly implement the result. The digital control system that
results is represented by figure 3.1.
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