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Samenvatting

Teneinde digitale regelproblemen op te lossen worden ze dikwijls
benaderd door discrete-tijd problemen. In dit proefschrift wordt
aangetoond dat het zonder benaderingen oplossen van digitale
regelproblemen het ontwerp en de toepassing van digitale optimale
robot regelingen met een 'grote" sample tijd mogelijk maakt. Dit
is van groot belang daar in het geval wvan robot-regeling de
computer in het algemeen zwaar belast is met rekentaken. Het
bepalen van de gewenste beweging van de robot als functie van de
tijd is dikwiils de uitkomst wvan een niet lineair optimaal
sturings probleem. Aangetcoond wordt dat het expliciet gebruiken
van het stapvormige karakter van de sturing de oplessing van dit
probleem soms vereenvoudigt.

We concentreren ons op drie typen robot regelproblemen en
beschouwen =zowel cartesische robots, waarvan de dynamica
overwegend lineair is, naast andere typen, waarvan de dynamica
niet lineair is., We lossen het tijd optimale regelprobleem op
waarbij de begin en eindposities alsmede snelheden van de
afzonderlijke robot armen zijn voorgeschreven, gegeven
begrenzingen van de stuurvariabelen.

We lossen het probleem op waarbij de robot in minimum tijd een
voorgeschreven beweging in de ruimte, genaamd een pad, moet
doorlopen. Het pad bheschrijft de gewenste posities van de
afzonderlijke robot armen als functie van een zekere parametef.

Bij het oplossen van de voorgaande twee problemen werd aangencmen
dat de sturing continu is in de tijd. Tenslotte lossen we het
tracking-probleem op waarbij de gewenste ©pogities van de
afzonderlijke robot armen 2ijn gegeven als functie van de tijd.
Deze kunnen bijvoorbeeld de uitkomst =zijn van een van de twee
voorgaande problemen. Het doel is deze robot beweging zo
nauwkeurig mogelijk te realiseren rekening houdend met het
stapvormige karakter van de sturing. De oplossing van het tracking
probleem wordt gegeven in teruggekoppelde vorm en is zodanig dat
slechts de terugkoppeling on-line behoeft te worden berekend.
Oomdat het digitale regelprobleem zonder benaderingen wordt



opgelost kan een 'grote" sample-tijd worden gekozen. Zelfs in het
geval van robots met een aanzienlijk aantal vriiheids graden, is
de oplossing derhalve geschikt voor implementatie in relatief
aenvoudige, langzame computers.



Summary

In order to solve digital contrel problems they are generally
approximated by discrete-time problems. In this thesis we
demonstrate that solving digital control problems without making
any approximations allows for the design and use of digital robot
controllers with "large" sampling times. This is very important
since in the case of robot control the computational burden on the
computer is generally high. The determination of the desired robot
motion as a function of time often involves a nonlinear optimal
control problem., This problem is generally solved assuming a
continuous-time control. We demonstrate that explicitly using the
plecewise constant nature of the digital control may simplify the
solution of this nonlinear optimal control problem.

We focus on three types of robot metion control problems where we
consider both rigid cartesian robots, having basically 1linear
dynamics, and other types, having non-linear dynamics. We solve
the time-optimal control problem where the initial and final
positions and velocities of the robot links are prescribed and the
objective is to realize the transition in minimum time, given
bounds on the control variables.

We solve the time-optimal path tracking problem where the link
positions are prescribed as a function of a certain parameter.
This parameterization is called a path and describes the gdesired
robot motion in space. Again the objective is to travel the path
in minimum time given bounds on the control variables.

In the previocus two problems we assume a continuous-time control.
Finally we solve the tracking problem where the link positions are
specified as a function of time. These could be for example the
outcome of the previous two probléms. The objective of the
tracking problem is to track the prescribed robot motion as close
as possible given the piecewise constant constraint on the
control. The solution of the tracking problem is in feedback form,
and characterized by the fact that it only requires the feedback
to be computed on-line. Furthermore since the digital control
problem is not approximated by a discrete-time problem it allows



for the choice of "large" sampling times. Therefore even for
robots with a large number of degrees of freedom, it is suited for
implementation in relatively simple, slow computers.



INTRODUCTION
1 Motivation and general research objectives

Robot manipulators are actuated mechanical mechanisms
designed and build by men. Therefore most parameters involved in
the dynamic behavior of manipulators are known in principal.
Compared to the dynamics of many other processes, such as chemical
ones, the dynamics of manipulators are very well known. This
justifies an optimal control approach. o¢Other approaches to
control, such as adaptive and robust control, are justified if
vital dynamic parameters are unknown. In the literature: however,
the majority of proposed control schemes for manipulators, is
based on adaptive control (Wen and Bayard 1988a,b). This is
usually motivated by reasoning that the load the manipulator will
carry is unknown, However in most industrial applications the load
is known in advance and so is the desired manipulator motion. The
latter assumpticns will be used throughout this thesis. This
implies that most computations can be performed Q{f-line allowing
for very simple on~line controllers for manipulators with even a
large number of degrees of freedom. If we do not assume the load
and the manipulator motion to be known in advance, the results of
this thesis might still be valueable, for instance if we apply
optimal receding horizon controllers. In these cases however the
number of on-line computations to be performed increases
dramatically.

In the treatment of manipulator control problems one generally
considers actuation torques or forces, applied to the mechanism,
to be the control variables (Bobrow et al. 1985, Craig 1986,
Geering et al. 1986, Shin and Mec Kay"1986, Bayard and Wen
1988a,b}. In this thesis we will focus on manipulators actuated by
current controlled DC-motors., Most industrial manipulators are
actuated by DC-motors since DC motors operate over a wide speed
range and have excellent control chacteristics (Leonhard 1985).
Since the motor-~current of a DC-motor is proportional to the
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torque it generates, the structure of the manipulator dynamic
model 1s not affected by the actuator dynamics, assuming the
transmission from the motor to the mechanism to be perfectly
rigid, {.e. the transmission does not suffer from bhacklash or
flexibility. Throughout this thesis we consider rigid manipulators
which constitutes the latter assumption and the assumption that
the mechanism is perfectly rigid., Implemented controllers based on
these assumptionz demonstrated proper performance (Mills, Kuruvila
and Singh 1986, Khosla and Kanade 1988). Only in case of rigid
manipulators do measurements of the motor position and speed
directly reflect the individual positions and speeds of the links,
and thereby the position and orientation of the Tool Center Point.

The approach to the optimal control of rigid wmanipulators
presented in this thesis differs from other optimal control
approaches in the following way. Manipulators are controlled by
digital computers, so the control problems constitute digital
control problems, i.e. problems where a continuous-time system is
controlled by a digital computer. The digital control system is
schematically represented by figure 1, and consists of a
continuous-time system with a sampler at the output and a sampler
and zero order hold at the input.

U( tk) >i Zero O.:de'r Hold { Continuous-time ){ Y ( t k )
; Circuit u (J() System
U

Digital
Computer

Figure 1. Digital Control System
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The task sequence of the computer is represented by figure 2. At
each sampling instant the computer has to activate a previously
computed control and at the same time perform measurements. During
the sampling interval the measurements performed have to be read
and based on the result a new control has to be computed.

Tk

t lit
4 A
/ \\ Computation _ /
ult,) y(t) " Ultyy)

Figure 2: Task sequence of the computer

While other approaches solve digital control problems making
approximations we will solve the digital optimal control problems
without making any approximations. While other approaches only
consider the behavior at the sampling instants (Ackermann 1985,
Astrom and Wittenmark 1984, Franklin and Powell 1980) our approach
explicitly considers the inter-sample behavior. Like the other
approaches our approach expiicitly considers the fact that we have
sampled-data and that the control is of piecewise constant nature.
Digital controllers that explicitly consider the inter-sample
behavior were, for rather peculiar reasons, called sampled-data
controllers (Levis Schlueter and Athans 1971, Halyo Caglayan 1976)
since it is not the fact that they use sampled-data which
distinguishes them. In this thesis we therefore prefer to call
them digital controllers since proper digital controllers consider
the continucus-time system behavior explicitly. In this case we
are not forced to chose small sampling times and/or search for
discrete-time cost c¢riteria that result in a satisfactory
continuous-time behavior, as is required by the other approaches.
It is for instance frequently stated in the literature that
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sampling times larger than 20 milliseconds are improper for
manipulator control, since large errors and instability will ocour
{Luh, Walker and Paul, 1980, Vukobratovic and Stokic, 1982)., In
this thesis we will demonstrate that controllers with sampling
times up to 200 milliseconds give accurate results when applied to
an industrial two 1link cartesian manipulator that moves with
speeds up to 1.5 meters per second.

The industrial twe link cartesian manipulator, shown in figure 3,
was part of a flexible experimental setup, represented by figure
4,

Figure 3

Servo Cartesian
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Figure 4: Schematic representation of experimental robot control system
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We modified the servo amplifiers in such a way that the control is
directly applied to the DC motor current controllers inside the
serve amplifier. So we actually control the DC motor currents
which are proportional to the torque or force applied to each
link. The sampling instants of the measurements as well as those
at the input of the servo amplifiers could be chosen arbitrarily,
using the clock of the computer. This allows for the choice of
different sampling intervals, even within one experiment, and also
offers the possibility to monitor inter-sampling behavior. The
choice entirely depends on the digital computer software, which
also determines the digital control algorithm. So the only
restrictions imposed on the digital control algorithm are the
available outputs, i.e. the link positions and velocities, and the
computational speed of the computer including the time it takes to
read and write data from and to outside. HNote that within one
sanmpling interval data have to be both read and written. Although
computers can generally write and read data very fast the time
necesarry to put a computer into the write or read mode often
exceeds sampling intervals for robot manipulators. A solution is
to use I/0 equipment which can be controlled by the computer via
micro instructions, For instance in case of a PC many such 1/0
cards are available., In our case the 16 bits I/0 card for the
HP1000 computer offered the same possibility. Then the
computational speed of the computer, together with computational
demand of the control algorithm, determine the minimum length of
the sampling interval.

2, General approach to the control problems

The optimal control approach has been motivated by the fact that
manipulator dynamics are well known in principal. The dynamics are
determined by the eguations of motion of the manipulator, which in
turn depend on the mass and moment of inertia of each link, and
also gravity and friction. Although they can be computed from the
mechanical design manipulator manufacturers are often unable to
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quote the mass and moment of inertia of each link of a
manipulator. Friction parameters generally cannot be computed from
the design. They however can be obtained from relatively simple
identification experiments {(Marilier and Richard 1989). The reason
why little effort has been taken to obtain the dynamic parameter
values of manipulators is probably that they are still very often
controlled by experimentally tuned individual PID controllers for
each 1link (Craig 1986). However since the quality of control is
primarily determined by the accuracy of the dynamic model on which
it is based, we want to stress here that to achieve accurate and
fast control it is of wvital importance to obtain the dynanmic
parameter wvalues. Since accurate knowledge of the manipulator
dynamics is of primary importance to achieve accurate and fast
control, in this thesis we have made no approximations with regard
to the, generally nonlinear, manipulator dynamics. Often the
nonlinear model is linearized and the influence of friction and
gravity are neglected or regarded as disturbances (Guo and Koivo
1984, Tomizuka et al. 1988)., We always take iInto account gravity
and friction and use linearized models only at the level of
perturbation control,

The digital controllers presented in this thesis are generally
based on the idea of perturbation control (Athans 1971i). The
digital control system is schematically represented by figure 5.

utly) ero 2 I iz Y{U yﬁk)
J(> z g::‘lm U(“ Syslem ¢ )(

b

sulty) ay{ig}
/_\:‘_—km Compensator ‘(-?fw—iw——
¥ :

] . ]
Digital Compuier

Figure 5: Digital control sysiem
with a digilal compensalor
based on linearized dynamics
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The digital perturbation controller, i.e. the compensator,
consists of a linear optimal digital regulator and a discrete-time
Kalman one step ahead predictor. It is based on a linear model,
which may include additive white measurement and system noise,
that approximately describes the dynamic behavior of small
perturbations from a so called ideal input-state response ub(t),
X, (t) which represents a desired admissible system behavior, often
referred to as the trajectory. The linear optimal digital
regulator is a feedback controller used to control deviations from
the trajectory to zero. Usually a discrete-time linear optimal
regulator is used which does not take into account the
inter-sample behavior (Ackermann 1985, Astrom and Wittenmark 1984,
Franklin and Powell 1980)}. The linear optimal digital regulator,
presented in this thesis, explicitly takes 1into account the
inter-sample behavior. This allows for the choice of "large”
sampling times which is very important in the case of manipulator
control, wsince the computational burden on the computer is
generally high.

Since we consider digital control systems as represented by figure
2 the trajectory in this thesis consists of a continuous-time
state trajectory xb(t) .generated by an admissible piecewise
constant open loop control ub(t) and usually is the outcome of an
optimization problem. This optimization problem considers the
generally nonlinear system dynamics and assumes them to be
deterministic. Generally the optimization of the trajectory u,(t),
x,(t) is performed assuming u(t) to be a continuocus-time control
(Athans 1971, Lewis 1986).

3 Contreol problems considered in the thesis

In this thesis we will treat three types of control
problems which often appear in practice. Since manipulators are
often used for assembly a general objective 1is to operate
manipulators in minimum time. The majority of assembly operations
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performed by manipulators involve "point to point" motions., A
point to point motion is chavacterized by a desired initial and
final position of the links of the manipulator. Throughout this
thezis the individual link positions and speeds are chosen to be
the state variables of rigid manipulators, As already mentioned
the actuation forces and/or torques are considered to be the
control variables. These control variables are limited by a
maximum and minimum value. Performing a pick and place operation
in minimum time therefore comes down to a time-optimal control
problem with fixed initial and final state and bounded control.
This is one of the control problems treated in this thesis.

Many applications of industrial manipulators, such as spraying and
cutting, are characterized by the fact that the manipulator motion
is specified in space. More precisely we assume the individual
positions of the links to be known as a function of a certain
parameter, which does not represent time. This parameterization is
called a path. The second problem treated in this thesis is a
time-optimal control problem with bounded control where the state
is constrained to follow an arbitrary path.

Finally we will treat the tracking problem where it is desired
that the manipulator tracks a reference state trajectory. This
reference state trajectory is determined by the desired indivigual
link positions as a function of time, which may for instance be
the outcome of the previous two problems. For sonme applicatiohs,
such as welding, the reference state trajectory is known
a priori.

Since we elther assume the initial and final state, the reference
state trajectory, or the path to be known in advance, in this
thesis we will not be concerned with problems concerning
manipulator kinematics. Manipulator tasks are initially specified
through desired positions and orientations of the Tool Center
Point of the manipulator. Kinematics are concerned with the
problem of which individual 1link positions result in a certain
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position and orientation of the Tool Center Point. XKinematics
constitute transformations. Software to compute these complicated
transformations is available nowadays and since we assume the
manipulator task to be known in advance the kinematic
transformations can be computed off-line. In our approach to
manipulator control we are not faced with on-line computational
problems regarding manipulator kinematics,

In this thesis we will concentrate on twe specific manipulators,
One is an industrial two link cartesian manipulator, the other a
two 1link articulated arm manipulator. However, the control
algorithms presented in this thesis can all be extended in a
straightforward manner to manipulators with more links. The two
link ocartesian manipulator was part of a flexible experimental
setup, characterized by the possibility to implement any kind of
controliler at the lowest level. The experimental setup was used to
test implemented control algorithms for cartesian manipulators,
The two 1link articulated arm manipulator wasg taken from the
literature {Geering et al. 1986), and simulations were performed
to test control algorithms for articulated arm manipulators,

4 Qutline of the thesis

The thesis merges a collection of papers which have been
published or have been submitted for publication in international
journals concerned with control and/or robotics, The first chapter
contains papers that present new general results necessary to
solve the robot motion control problems treated in chapter 2 and
3. The first paper demonstrates the applicability of a
perturbation controller, based on linearized dynamics, to control
articulated arm manipulators. The concept of first order
controllability is introduced. A system is first order
controllable about a trajectory if the linearized dynamics about
the trajectory constitute a differentially controllable linear
system. A system is first order controllable if the linearized
dynamics about any admissible trajectory constitute a
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differentially controllable linear system, It is demonstrated that
first order controllability is an important condition for the
successful application of a continuous-time perturbation
controller to control a nonlinear system about a trajectory. In
chapter 3 1t is argued that the same holds for first order
reconstructability, which is the dual property. It is demonstrated
that rigid robot manipulators are first order controllable
systems, in chapter 3 that +they are also first order
reconstructable systems. Therefore we may successfully apply a
perturbation controller based on linearized dynamicos. Furthermore
the concept of first order controllability is demonstrated to be
closely related to singularity of the time-optimal control
problem. The time-optimal control problem is treated in chapter 3.

The other papers in chapter 1 deal with the derivation and
computation of the digital optimal regulator and tracker for
linear time-varying deterministic and stochastic systems. The
design and computation of digital optimal perturbation controllers
for articulated arm manipulators, treated in chapter 3, is based
on the digital optimal regulator result, The design of digital
optimal controllers for cartesian manipulators, treated in chapter
2, is based on both the digital optimal regulator and tracker
result,

Chapter 2 is concerned with the control of an industrial two link
cartesian manipulator. The time-optimal control problem where the
state has to follow an arbitrary path has already been solved in
the literature (Bobrow, Dubowsky and Gibson, 1985, Shin and Me
Kay, 1986}, In practice however, besides the bounds on the control
variables, upper and lover bounds on the individual Iink speeds
have to be considered. The firast paper eXtends the solution to
include these bounds. Furthermore for the first time it presents a
detailed description of a numerical procedure to compute the
solution for arbitrary paths, together with numerical examples,
The second paper solves the tracking problem and presents results
obtained with implemented digital optimal controllers. The paper

10
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uses both the digital optimal regulator and tracker presented in
chapter 1. The implemented controllers were computed for
time-optimal reference state trajectories computed in the first
raper. A number of experiments have demonstrated that a very
simple method, proposed to solve the time-optimal control problem
with fixed initial and final state, is very promising. This is
left as a possible subject of further research.

Chapter 3 is concerned with the digital optimal contrel of a two
link articulated arm manipulator. The first paper in chapter 3
treats the time-optimal control problem for nonlinear systems,
linear in the control, with fixed initial and final =state and
bounded control. A numerical procedure is presented to compute
non-singular time-optimal solutions =atisfying Pontryagin’s
Minimum Principle, which constitutes necessary conditions for a
time-optimal control. It is well known that solutions to
non-singular time-optimal control problems with bounded control
are bhang-bang solutions, 1i.e, solutions where each control
variable equals either its upper or lower limit at all times,
except for the switch times, where it switches from one extrenme
value to the other. The first part of the numerical procedure
consists of a numerical methed that computes bang-bang solutions
which transfer the system from the initial to the final state. The
second part consists of a new numerical test for non linear
systems, linear in the control, which determines whether bang-bang
solutions satisfy Pontryagin’s Minimum Principle. The test reveals
the new important fact that the probability for a bang-bang
solutions with more than n-1 switches, where n is the dimension of
the system, to satisfy Pontryagin’s Minimum Principle, is almost
Zero, Using this test it is demonstrated that some time-optimal
solutions for a two link manipulator mentioned in the literature
to satisfy Pontryagin’s Minimum Principle (Geering et al. 1986) do
not. A numerical procedure, based on control parameterization, is
demcnstrated to generate "near time-optimal solutions" for both
singular and non-singular time-optimal control problems of a two
link manipulator. This method alsc offers the possibility to take

1l
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into account upper and lower bounds on the individual link speeds.
Finally numerical examples are presented. The second paper deals
with the tracking problem. Based on the solution to the digital
ING regulator problem, presented in chapter 1, it treats the
design and computation of digital optimal compensators to control
nonlinear uncertain systems about trajectories, Numerical examples
and simulation results for a two link manipulator are presented.
The time-optimal control problem where the state has to follow an
arbitrary path has already been solved in the literature (Bobrow,
Dubowsky and Gibson, 1985, 8hin and Mc Kay, 1986). It can be
extended to include upper and lower bounds on the individual link
speeds, as explained in chapter 2,
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CHAPTER 1

INT. J, CONTROL, 1990, voL, 51, no. 6, 1591171

First order controllability and the time optimal contrel problem for
rigid articulated arm robots with friction

L. G. VAN WILLIGENBURGY

For non-linear systems, linear in the control, a relationship between the singularity
of the time optimal control problem and the differential controllability of the linear-
ized dynamics along a time optimat solution that satisfies the minimum principle
is established. Known results concerning the solulion of the time optimal control
problem for a two link planar articulated arm robot without friction are extended
to a general rigid articulated arm robot with friction. Finally, these results are used
to prove differential controllability of the lincarized dynamics {called first order
controllability) along any trajectory of rigid ariicufated arm robots with friction.

1. Introduction

The production of an assembly linc is determined by the speed of operation of
parts operating in the line. If a robot is part of an assembly linc its speed of operation
inay determine the production rate. ‘The most common operation performed by
robots is ‘pick and place’. Therelore performing a pick-and-place operation in the
minimal time is a very imporlant robot motion conlrol problem. This problem is a
special case of the time optimal robot motion control probiem with fixed initial and
final states and with bounded control, which is treated here. In recent years, a number
of articles on this problem have appeared. They can be divided into two categorics.
In one category, solutions are bascd on lincar models (oblained in different ways
under different assumplions) approximating the non-lincar robot dynamics (Khan
and Roth 1971, Kim and Shin 1985, Roodhart et al. 1987). In the other category,
the *true’ non-lincar dynamics of the rigid robot are considered (negtecting friction,
however). Very often results are stated for the simplest articutated arm robot, ie. a
planar arm consisting of iwo links (Ailon and Langholz 1985, Sontag and Sussman
1985, Geering et al. 1986, Wen 1936).

Here we use the ‘true’® non-linear dynamics of a general arliculaled arm robot in
which [riction is modeclied by possibly state dependent viscous and Coulomb forces.
We show by simple proofls that results found in the literature {Ailon and Langholz
1985, Sontag and Sussman 1985, Wen 1986} concerning the existence and form of
the solution to the time oplimal control problem alse appiy o this general case. The
paper first presents a relationship between the singularity of the time optimal control
problem and the differential controllability of the linearized dynamics about a time
optimal trajectory that satisfics the minimum principle. This relationship is finally
used (o prove that the lincarized robot dynamics along any trajectory, are difleren-
tially controllable. This is a very important result since a general approach (o control
a non-lincar system consists of controlling the system about an ofi-line-determined
state {rajectory and open-toop control, using a so-called perturbation controller
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1160 L. G, van Willigenburg

(Athans 1971), The design of this perturbation controller is based on the linearized
dynamics about the off-line-determined solution. The main condition to apply this
approach successfully is that the finearized dynamics be differentially controllable,
since this guarantees that all deviations from the trajectory can be controlled to zero
in an arbitrarily smail-time,

2. Deterministic non-linear minimum time problem with bounded control
We first consider a deterministic non-linear optimal control problem with
bounded control. Given the non-linear system

x =f(x, u) : M

and the cost criterfon to be minimized
T
J(to) = B{x(T}, T) + J Lix, u}dt @
fo

the final state constraint
Y{x(T), T)=0 &
and bounds on the control
a,{:u;sb, i=l,...,M {4}

where M is the dimension of the control u, The hamiltonian H of this problem is by
definition

H{x, u) = L{x, u) -+ )‘Tf(x» u) (5)

where X is the costate, The minimum principle states that the optimal control mini-
mizes the hamiltonian with respect to the control. We further consider the special
case where the hamiltonian (5) is linear in the control, i.e. both f{x, u} and L x, u)
are assumed 1o be linear in the control: '

S u) =£1(K) + fo{x)u - ©
Lix, u) = Li{x} + L,(x)u M

In this case, the hamiltonian equals
H=Li + 3 + Az + Lo)u (8)

To minimize the hamiltonian (8) with respect to u given the bounds (4) on the control,
u should be selected as

Uy == a; il (lez +L2)'>0 (9}
wpe=by i (T + Ly) <0 (10)

The component u; of the control vector u takes on cither its maximum or minimum
value dependent on the sign of the so-called corresponding switching function
(A¥f; + Ly);. If the switching function equals zero for some time ¢, (5} and {10) do not
determine the corresponding control variable, If this happens only at isolated time
instants, the correspondiilg control variable may switch at these instants from ils
maximum to its minimum valug, or vice versa. the problem is called regular in this
case. When, on the other hand, a time inferval exists during which one or several
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First order controliability and tine optimal control 1161

switching functions equal zero, (9) and (10) no longer determine a meaningfui solution.
The problem is called singular in this case.
The problem in our case is a minimum time problem, so

L=1 (an
and therefore

Li=1 (12)

Ly=0 (13)
Given (7) and {13), the switching lunctions in (9} and (10) simplify to

(A (14)

Definition 2.1

A minimum time problem, linear in the control, is called singular in w, over
(ty, t2), ty <y, if for all t e(ty, ¢,) the corresponding switching lunction (14) equals
ZET0,

The linearization of (1) along a trajectory x(¢), £ € [0, T] is given by

X(g) = A(t) x(t) + B{t) u(f} {135}
where
&
Af)=—= (16)
ax x=x{e), u=1ui)
&
B()= -~ {17
au P I RTETT )]

The system (15) represents the first order dynamics of (1) along the trajectory. The
dynamics of small deviations from the trajectory can be very well approximated by
these first order dynamics. Sinee the system (15) is fully determined by A(f) and B(),
one often refers to A{f), B(t) being the linearization of (1) about the trajectory. Note
that il the system (1} is lincar in the control, the lincarization A(t}, B{r) is independent
of uft), so it depends only on x(1).

Lemma 2.1
A non-linear minimum time problem, linear in the control, (6), (7, (8), (12), (13) is
singular in u, over (fy, ), t; < t,, il and only il for all 1 € (¢, t;) the following holds
true:
— o= AT A (18)
Bl =0 (19)
where A(t), B(t) is the lincarization and Mt} the costate at time £ e (¢4, 1,) for & time

oplimal trajectory salisfying the minimum principle. B, is by definition the ith column
of B.

Proof
Equation (18) is the costate cquation of the minimum time problem which holds
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1162 L. G. van Willigenburg

everywhere along a time optimal trajectory satislying the minimum principle.
Equation (19} states that for time ¢ € (t,, ¢,) the switching function corresponding to
t; equals zero, 0

3. Differential controllability and reconstructibility of linear varying systems

To establish first order controllability of a non-linear system along a trajectory,
we have to introduce a special kind of controllability for time varying systems called
differential controflability (Chen 1970}, or full controllability (Hermes and La Salle
1969). To show the analogy and differences between complete controllability, and
differential controllability we first state the weil-known definitions of complete con-
trollability each followed by analogous definitions of differential controflability. Since,
for a linear time varying system, reconstructibility is dual to controllability, we follow
the same approach to introduce differential reconstructibility. All definitions refer to a
general, finite dimensional lincar time varying system (LTVS), given by

—w<t<tw (20}
X(t) = A@) x{t) + B(t) u(1) 21)
y{1) = C{t) x(f) (22)

Definition 3.1

An LTVS is called completely controllable at time ¢, if time 1, exists such that
ty > 8y, £ — 1y is finite, and each state x(t,) can be (ransformed to each x(t,).

Definition 3.2

An LTVS is called differentially controliable at time 1y, il t; — ¢, can be made
arbitrarily small, £, > ¢,, and each state x(t,) can be transferred to cach x(t,).

Definition 3.3

An LTVS is called completely controllable if it is completely controliable at each
time ¢,

Definition 3.4

An LTVS is called differentiafly controllable if it is differentially controllable at
each time ¢.

Definitions 3.1 and 3.3 constitute the well-known definition of complete controlla-
bility, which means that any state can always be transferred to any other state, or,
equivalently, any state can be transferred to the zero state in finite time, Differential
controllability means that any state can always be transferred to any other state in
an arbitrary small amount of time. The above definitions hold for the LTVS (20), (21)
and (22). However, definitions concerning differential controltability aiso apply (o an
LTVS which is defined over a finite time interval ¢ e [1,, {¢]. In this case, ¢ in Definition
34 is restricted to the interval [1,, 1),

Lenma 3.1

HIf an LTVS is completely controllable but not differentially controllable, at least
one time interval (¢, 1,) exists where the LTVS is differentially controllable for no
te (tl JZ)'
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Proof

If the LTVS is completely but not differentially controllable, then, according to
Definitions 3.3 and 3.4, there exists at least one time #; for which it takes a non-
arbitrarily small, but finite, time to control all x(¢,) to zero. Consider the earliest time
t, > 1; for which all states x(t,) can be controlled to zero, and the time interval {t,, ¢3).
So there must be at least one slate X’ (f;) that can be transferred to zero no sooner
than t,. Consider the transfer x'(0), £ € [y, t2] of X'(¢;) to x'(2})=0. Clearly, for all
tE(f;, 1) X{6)#0 and cannot be controlled to zero sooner than t,, so not in an
arbitrarily short time. O

Considering Lemma 3.1, we state the following definition.

Definition 3.5

The LTVS is called differentially uncontrollable over (t;, t;) if for all t € (¢4, 12) the
LTVS is not differentially controilable.

Lemma 3.2
For an LTVS, the possibility to control x{#;) to X{t;}=0 is equivalent to the
possibility of controlling « ¢ x{t,) to x(¢,) =0, « real and bounded.

Proof
Consider the response of the LTVS to u(z), t € [t5, £2]
3]
x(t2) = ez, t)x(81) + j ey, t)B(Ruly) de (23)

I

Clearly the transfer x{i,) to X(t,) = 0 being realized by u(r) is equivalent to the transler

of «+ x(t,) to X{t,) =0 being realized by « - u(z). O

Lemma 3.3

Consider again the time interval (t,, ;) in Lemma 3.1. For each {e(t;, t,), the
earliest time for which all states x{f), [x()]l <&, >0 and small, ie. all states in a
neighbourhood of the zero state, can be conlrolled to the zero state, is f,.

Proof
Lemma 3.1, and Lemma 3.2 for small enough o, imply Lemma 3.3. £

Lemma 3.3 reveals an important property of an LTVS that is completely but not
differentially controllable. For such a system there always exists a time interval (¢, 12)
during which it is impossible to control any state in the neighbourhood of the zero
state, or equivalently any other state, to that state. Loosely speaking, the LTVS is
temporarily uncontroilable.

It is well known that the controllability of an LTVS is equivalent to reconstruc-

tibitity of the dual system
®(f) = AT — 0+ CT(e* — Nu(® 24
y() = BT (> — )x(1) (23}
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1164 L. G. van Willigenburg

This suggests the possibility of introducing differential reconstructability dual to
differential controllability,

Definition 3.6

An LTVS is called completely reconstructible at time ¢, if t; < ¢, exists such that
ul)=0, y{{) =0, 1, <t < ¢, implies x(t;) =0, and ¢, — ¢ is finite.

Definition 3.7

An LTVS is called differentially reconstructible at time t, if t; — ¢, can be made
arbitrarily small, t; <t;, such that u{f)=0, y(f} =0, t, <t <t, implies x{t) =0,

Definition 3.8
An LTVS is completely reconstructible if it is reconstructible for all time ¢,

Definition 3.9
An LTVS is differentially reconstructible if it is differentially reconstructible for all
time ¢,

Analogous te Definition 3.5, we introduce differential unreconstrucibility dual to
differential uncontroflability.

Definition 3.10

An LTVS is differentially unreconstructible gver {ty,t;) if for all fe(t,,t,) the
LTVS is not differentially reconstructible.

Definitions 3.6 and 3.8 are based on a theorem concerning complete reconstructibility
for an LTVS {Kwakernaak and Sivan 1972). Complete reconstructibility means that
measurements over a finite time interval in the past always complelely determine
the current state, Differential reconstructibility means that measurements over an
arbitrarily smatl time interval in the past completely determine the current state,
Since aspects of controllability and reconstructibility for linear time varying systems
are completely determined by the controllability and reconstructibility gramian,
which for the LTVS and its dual system are the same (Johnson 1985), it can casily
be seen that differential conirollability is indeed dual to differential reconstructibility,
as defined above.

Lemma 3.4
If for ail ¢ € (¢,, t,), the following hold:
x(r) #0 {26)
BYx(y=20 n
X(1) = ATOX() 28)

then the system A(f), B(t) is differentially uncontroliable, and equivalently the dual
system BY(f), AT(¢) differentiatly unreconsiructible over {t;, t,).
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Proof

For all t(t,, ;) we may consider an interval (£, t + &), t + & < ¢, within (2, ;).
So, {20), {21), {22) hold over (1, ¢ -+ &), which by Definitions 3.7 and 3.9 implies that,
for all t&(t, 1), BT(t) and AY(f) are not differentially reconstructible. Hence, by
Definition 3.10, this implies Lemma 3.4. @]

4. TFirst order controllability of a non-linear system along a trajectory
Consider the system (6), which is lincar in the conirol, with given initial state, and
bounded control,

®(0) = ¢ 29
u()e U (30)

Define the attainable set {(x,, T) [rom x, consisting of all solutions to (6), (29}, (30)
for some finite time T

Qxq, T)={x(f) solves (6), (29), (30), 0 <t < T < w0} {31

The formula Qx,, T} can be considered both as the set of all possible trajectories
(1), t € [0, T, x(0) = x, and as the set of states x that can be reached from x, within
time T

Consider the finearization (16), {17) along any trajeclory from (X, T).

Definition 4.1

Any trajectory from Q(Xo, T) is called first order comtrollable il the linear time
varying system A(f}, B(1), € [0, T] determined by the linearization about the trajec-
tory x(1), is differentially controllable,

A well-known approach to control a non-linear system is to use a linear pertur-
bation controller to control the system about an off-line determined trajectory and
open-loop control, The perturbationi controller has a design based on a first order
approximation of the non-linear dynamics, ie, the lincarization (16), (17) about the
trajectory (Athans 1971). The main condition for successflully applying this approach
is that this linearization, which constitutes a time varying linear system, is differen-
tially controliable. For this implies any deviation can be controlled to zero in an
arbitrarily shorl time. We use the term first order controllability since controltability
along a trajectory is defined using the complete non-lincar dynamics (Hermes 1976).
Sufficient conditions for controllability along a trajectory are presented in this paper.
They coincide with what we call first order controliability. First order controtlability,
therefore, implies controllability along a trajectory.

Definition 4.2

Any trajectory from Q{x,, T) is called first order controllable from u, if the time
varying linear single input system A(f), B;(¢) is differentially controllable, where
A(f), B(t) is the lincarization about the trajectory and i again refers to the ith column,

The definition refers (o frst order controllability only if u; is used to control the

system about the trajectory. Since m, in general is not the only control variable, the
trajectory being first order uncontrollable from u; does not mean the trajectory is
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first order uncontroltable. For it can be fitst order controllable from another, or a
combination of other, control variables. If, however, the trajectory is first order
controllable from one of the conirol variables, it is first order controllable.

Definition 4.3

Thelinear time varying system A{(#}, B(#), t e [0, T is called differentially uncontrol-
lable from w; over (ty,1,), 0 <ty <t, < T if A(f), B/{t) is differentially uncontroilable,
over (t;,£,) where i refers to the ith column of B,

As we can see from Lemma 2.1 and Lemma 3.4, the conditions for the linearized
system to be differentially uncontrollable from u; over {¢,, ¢,) are almost the same.as
for the minimum time probiem to be singular in u; over (t,, t,). There is a sign
difference between (18) and {28) which is, however, unimportant, since the controlla-
bility of Aff), B{) is equivalent to the controllability of — A(f), B(t). Furthermere it
can be proved (Sage and White 1977) that, for a minimum time problem that is linear
in the control with fixed initial and final states,

H=0 (32)

everywhere along a time optimal trajectory that satisfies the minimum principle.
Given (5), {1 1) we can write the following generat expression for the hamiltonian:

H=1+4ATf (33
Given {32), (33) everywhere along a time optimal trajectory
L#0 (34

which matches the condition x(£} 20 in Lemma 3.4

Theorem 4.1

A minimum time problem, linear in the control, with fixed initial and final states
being singular in ; over (¢, ), £; <!,, along a time optimal {rajectory satisfying the
minimum principle, is cquivalent to the locally linearized system about the time
oelimal trajectory being differentially uncontrollable from w; over {¢,, ).

Theorem 4.1 states that the conditions stated in Lemma 2.1 and Lemma 3.4 are
in fact equivalent, as we have shown, The only diffeccnce is that Lemma 3.4 refers
to any trajectory, and so (o all sets {x,, T) defined by (29), (30}, (31), for all Tand x,.
Lemma 3.4 refers ondy to time optimal trajectorics which, within each Q(x,, T), form
a subset. This is also reflected by the fact that L in Lemma 2.1 is the costate resulting
from the minimum time problem, whereas x in Lemma 3.4 may be any state,

5. Time optimal control problem and first order controllability for articulated arm
robots with friction
The dynamics of an N link articulated arm robot manipulator without friction can
be written (Craig 1986) as

= M0} + (0, 9) + G() (35)
where
6=(0, 0, .. 0, =(r; 1, ... T
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O¢, ..., Oy are the joint angles of the links and 14, ..., 7y are the actuation torques.
MO represents the inertial forces where M is an N x N positive definite mass matrix
dependent on Jink positions. ¥(0,0) is an N x 1 vector dependent on link positions
and speeds representing centrifugal and Corlolis forces. G(0) is an N x 1 vector
depending on link positions representing gravily forces. The aclualion torques are
considered Lo be the control variables of the system. If for instance the robot is
actuated by current controlled DC motors, and we neglect flexibility and play in the
transmission, the motor current is proportional {o the actuation torque. Equation (35)
is a non-linear system with a natural choice of state vector being (67, 0T)T. Friction
effects generate damping forces dependent on the positions and speeds of the links.
This means all friction cflccts can be modelied in {35) by introducing a term F on the
right-hand side dependent on 0 and 0 (Craig 1986).

7= M(O)U 4 V(0, 0) 4 G(0) + F (0, 0) (36)
We can represent the terms ¥, G, F in (36) by a single term T dependent on 0 and 0
1= M0)§ + T(0,0) (37)

Equation (37) is merely a symbolic notation which gives information about the gen-
eral form of the dynamics of a rigid articulated arm manipulator with [riction. How-
ever, in the rest of the paper it proves io be sufficient to use the simple form (37)
without exact knowledge of the dynamics. To analyse the problem we first write (37)
in state space form. Since M(0) is positive definite, (37) can be written as

=M~ Oz~ 7O, U] (38)
Introducing
Xy =0 {39)
X, =0 {40)
X
X = [ ] @1
X2
B=M"Y0) {42)
U=t @3
we can write {38) in stale space form using (39), ..., (43)
f:i = x, {44)
X, = -B(x)T(x) + B(x,)u (45)

1f we partilion the costale vector according (o (41), the hamiltonian for the system
(44), (45) equals

- i T,
H=1+ Alxa + Aa[ B(xl)T(x)+B(xl)u] (46}
and the costate equ_raliongs partilioned aTs
=&, = A[AX,~AB(X)T(x}+A B(x,)u]/ax, (47)
_ T, 5T T :
-3, = (AR, SAB(x ) T(X)+ASB(x Jul/ox, (48)

We can rewritc (47), (48) given the facts that a[ATx,1/dx, = 0, a[A] B(x,)u]fox, =0
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and 8[ATx, /0%, =,
-&, = [8[B(x)) (u-T(x)) 1/0%,1"2, (49)

-k, = A, - 81B(x)T(x)1/8x,1"A, (50)
We now statc and prove a theorem concerning the torm ol the sclution (o the lime
optimal robot motion centrol probiem.

Theoremn 5.1

There is no time interval where the time optimai robot molion control problem
with fixed initial and final states, given a general rigid articulated arim robot with
friction described by (44), (45), is singular in ail control variables.

Proof

Il the problem is singular in all control variables over some lime interval, then
the switching functions must all cqual zero over this time interval so (19) holds for
all I. This is equivalent to

BTh=0 (5D
which for the system (44), (45} by inspection of (46) means
BT (x, )%, =0 (52)

Since M in (36} is positive deﬁnilc, given {41), B(x,) is positive definite so (45) can
onty hold il b, = (. 1f &, =0 over the time interval, then 4, = 0 which, given (49} and
(50), implies &, = 0. This contradicls (33). 0

The theorem states that in any time interval the solution to the minimum time
problem is almost ¢verywhere non-singular in at least one control variable, So, in
any time interval almost everywhere, al least one control variable takes on an extreme
value. This resull has also been obtained by Ailon and Langholz {(1985), Sontag and
Sussman (1985), and Wen (1986). Theorem 4.1 stales that if the problem is singular in
some control variable over (¢, t; ), this is cquivalent to the lincarized system being dif-
ferentially uncontrollable [rom that control variable over (¢4, ¢,}. We can therefore derive
an equivalent result concerning the first order controllability of time optimal trajectories.
From {he proof of Theorem 4.1 we sce that along any lime optimal trajectory satisfying
the minimum principle, no time infervals exist where (51) holds. However, by inspection
of Lemma 3. this implies (hat any lime optimal trajeclory salisfying the minimum
principle is first order controllable. Since, for almost all time, the minimum time
problem is non-singuiar in at least onc control variable, equivalently the linearized
system about a time optimal trajectory is differeatially controllable from at Jeast onc
control variable. It is natural to wonder if these results can be extended to all trajec-
torics, ie. Lo all sels Q(x,, T), defined by (20), ..., (22), for all T and x,.

Theorem 5.2

For all rigid articulated arm robots with friction, described Ly (44), (43), any
trajeclory, i.c. any X(f), t € [0, T], T < o, is first order controilable. Even stronger,
for each time £e{0, T) the lincarized syslem about any trajeclory is differentially
controllable from at lcast one control variable,
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Proof

In the proof of Theorem 4.1, we have not made explicit use of the fact that A is
the costate of a minimum time problem. In fact A may be any state which, given
Theorem 4.1, implies Theorem 5.2, ]

Theorem 5.2 states that for each time ¢ along any trajectory, using just one control
variable it is already sufficient to control the linearized system about the trajectory
to a {ull neighbourhood in an arbitrarily short time. We have proved for general
rigid articulated atm manipulators with friction described by (44), (45), that the main
condition for successfully applying a perturbation controtler design, based on linear-
ized dynamics, is {ulfilled.

Until now we have assumed that a solution to the minimum time problem exists.
Ailon and Langholz (1985), prove this for a two link planar robot using Roxin’s
theorem. Another proof, given by Wen (1986), again for a two link planar robot, is
based on Fillipov's theorem (Hermes and La Salfe 1969). In both cases the result is
that a time oplimal solution exists if, and only if, the robot is able to move frem the
initial to the final state in some finite time, If neither the initial or final states violate
the physical constraints of the robot, any robot will be designed to be capable of
doing so, and the existence of the solution is guaraniced. We also prove the result
using Fillipov's theorem; however, in this case we prove it in conjunction with an
cxamination of the kinetic energy of a general rigid articulated arm robot with friction.

Theorem 5.2 (Fillipov's theorem, Hermes and La Salle 1969)
Take the system (6), with {29), (30) holding, where xq is the fixed initial state of a
minimum time problem. Define the set
R ={f{x, w ul)e U} (3)
for any
x e x,, T) (54)

the attainable set from x, for time T < oo defined in (31}, If f{x, u} is continuous in
x and u, R(X) is convex for all x, the set U given by (30) is non-empty and compact,
and Q(x,, T} is bounded, then {x,, T) is compact.

It can be proved {Hermes and Lasalle 1969) that if the conditions of Fillipov's
theorem are satisfied and for some T0< T< w0

X € YXg, T) {55)

where X is the fixed final state of the minimum time problem, then a time optimal
control for this problem exists. The system (44), (45) is continuous in X and u, U is
determined by (4) and so i is non-empty and compact. Since the system (44), (45) is
lincar in the control, R(x} is convex. We now prove that trajectories cannot finitely
cscape, which is a sufficient condition for Q(x,, T} to be bounded, This, then, com-
pletes the proof of the existence of a (ime optimal control for a general articulated
arm robot with friction given by (44), (45) if {55) holds,

Consider the general expression for the kinetic energy V of a mechanical systen:

05V = kT Mx (56)

where x consists of generalized coordinates and M is a positive definitc mass matrix
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(Meirovitch 1970), The joint angles of a rigid articulated arm robot are generalized
coordinates. So for the system (44), (45) X are generalized coordinates and the kinetic
energy of this system can be represented by

05V =xIMx, )

where M is some positive definite mass matrix. Since a mechanical system cannot
contain infinite energy, for all time the kinetic energy of such a system is bounded,
We prove that ¥ in (57) being bounded is equivalent to all components of x, being
bounded. Since, according to {44) and (55), the components of x; are finite lime
integrals of the components of x,, they are also bounded, which means that all
components of the state vector x of the system (44) and (45) are bounded. This implics
trajectories do not finitely escape.

So we are left to prove that if ¥ is bounded, all components of x, are bounded.
We need the following result.

Given a general guadratic expression

HOX
xTOx = ‘Zl 121 qQuXiX; (58}

where Q is an N square matrix with elements ¢ and x an N dimensional vector with
clement x, then there always exists a non-singular matrix T such that

XOx= 3wy (59)

i=1
with
y=Tx {60)

and furthermore, if Q > 0 then «; > 0 for all i.
Since M in (57) is positive definite

N
05V = XIMx, = ‘Z‘ ayt (61)

with &; = 0 for all i, Since the kinetic energy V is bounded, and g, is bounded for all
i, this implies p? is bounded, which implies y; is bounded for all i. Since T in {69) is
non-singular, (60) is equivalent to

Xx=T 1y 62)

Since the elements of T and therefore T~ ! are bounded, this implies all elements of
X, are bounded.

Summarizing, we have proved that for a general rigid articulated arm robot with
friction deseribed by (44) and (45), a time optimal control exists il (55) holds. This is
the casc if, from the initial state, the final state can be reached in some finite time.
This is always the case in practical situations. Considering the form of the time
optimal solution, we have proved that for almost all time at least one control variable
takes on an extreme value. Finally, we have derived the very important result that
any trajectory is first order controllable.
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L.G, VAN WILLIGENBURG, W.L. DE KONING

THE DIGITAL OPTIMAL REGULATOR AND TRACKER FOR DETERMINISTIC
TIME-VARYING SYSTEMS

Abstract

The general approach to solve digital control problems is to
approximate them by discrete-time control problems. In this paper
the digital control problems are solved without making any
approximation, i.e. using continuous-time ¢uadratic criteria. The
regulator and tracking problem are solved where the
continuous-time system is deterministic and time-varying, The
control is piecewise constant and complete state information is
available at the sampling instants. In a companion paper we solve
the regulator and tracking problem in the case of stochastic
systems and incomplgte state information. In both cases the
solutions are in feedback form and generated by a Riccati type
recursion which runs backward in time. In case of the tracking
problem the feedforward control component is also generated by a
recursion that runs backward in time. The numerical computation of
the solutions is not straightforward since the recursions demand
the computation of integrals involving the state transition matrix
of time-varying systems. In a third paper numerical procedures to
conpute the solutions are presented.

Keywords digital control, regulator, tracker, guadratic criteria,
continuous linear time-varying systems.

1. Introduction

In many practical situations we are faced with a continucus-tine
plant, controlled by a digital computer, It is common practice to
approximate the associated digital control problens by
discrete~time control problems which only consider the systenm
behavior at the sampling instants (Ackermann 1985). In these cases
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the inter-sample behavior is completely disregarded. Two main
disadvantages of this approach should be menticned. The sampling
time has to be chosen smrall enough to prevent undesirable
inter-sample behavior. For instance in the case of robot control,
where the computational burden on the computer 1is high, ¢this
presents a serious 1limitation, Furthermore a discrete-time
criterion has to be searched for, which leads to a satisfactory
continuous~time behavior. Both the choice of this criterion and
the choice of the sampling time are often reported to be a problem
{Franklin and Powell 1980, Astrom and Wittenmark 1984). In this
paper the digital control problems are solved without making any
approximations since we consider continuous-time criteria.

We will solve the gdigital optimal regulator and tracking problem,
i.e. problems involving a continuocus-time linear system with
piecewise constant control and a continuous-time quadratic
criterion. In the sequel of the paper the terms regulator and
tracking problem refer to these type of problems. We assume the
system to be deterministic and the availability of complete state
informaticn at the sampling instants. In a companion paper (Van
Willigenburg and De KXoning 1990) we solve the problems for
stochastic systems and incomplete state information. These
problems turn out to be certainty equivalent so we may use the
results of this paper where the state is replaced by its estimate.

Levis, Schlueter and Athans (1971) and De Koning {1980} have
treated the regulator problem for time-invariant systems. Halyo
and Caglayan (1976} have treated the regulator problem for
time-varying systems, but did not specify a numerical solution.
The time-varying case is important, for instance if we want to
design a digital perturbation controller, based on linearized
dynamics, for a non linear system that tracks a reference
trajectory e.g. a robot manipulator performing a prescribed
movement, The linearized dynamics in this case constitute a
time-varying system.

Van Willigenburg (1989) treated the trachking problem for
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time-invariant systems, using a fourier approximation of the
reference trajectory to turn the problem into a regulator prxcblem.
To accurately approximate the reference trajectory one often needs
a large number of fourier coefficients. Since the dimension of the
regulator problem is proportional to the number of fourier
coafficients, the method very often becomes impractical from a
computational point of view. Besides Van Willigenburg (1983) the
only work the author is aware of that treats the tracking problem
is presented by Nour Eldin {1971). He treats both the regulator
and tracking problem for time-varying systems. His approach to the
problems differs from the previous ones in that the problems are
treated as static optimization problems in stead of dynamic ones.
This is possible since the plecewise constant constraint on the
control leads to a finite dimensional control space if the horizon
of the problem is finite. From a computational point of view this
approach is impractical especially if the horizon of the problem
gets large.

It is believed that this is the first time both the regulator and
tracking problem for time-varying systems are solved treating them
ag dynamic optimization problems. This approach appears to be
mumerically attractive since the solutions are determined by a
Riccati type recursion that rung backward in time and, in case of
the tracking problem, a feedforward control component given by
another recursion that runs backward in time. The numerical
computation of these recursions however is not straightforward in
case of time-varying systemse. The recursions contain terms that
demand the computation of integrals involving the state-transition
natrix. The numerical computation of these integrals has only been
considered for time-invariant systems (Van Loan 1978), In a third
paper (Van Willigenburg 1990) we will @deal with this problem and
present numerical procedures to calculate the solution to the
regulator and tracking problem.

The outline of the paper is as follows. In section 2 we state the
regulator and tracking problem. In section 3 we present sclutions
based on static optimization to illustrate their numerical
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disadvantages, Section 4 contains the main result, i.e. the
solutions based on dynamic optimization., Conclusions are presente¢
in section 5.

2. The regulator and tracking problem

Consider the continuous-time linear time-varying system

X(t) = A(t) x(t) + B(t) u(t), (1a)

where A(t) and B(t) are the system matrices. The control is
plecewise constant, i.e.

u(t) = u(ty),  tefty,t. ),  k=0,1,2,3...., (1b)

where tk are the, not necessarily equidistant, sampling instants.
We assume complete state information at the sampling instants, so
x(tk), k=0,1,2,3,... are available.

The regulator problem for this system is to minimize

t
£
J = I [xT(t) Q) x(t) + ul(t) R(t) u(t)] dt + x () H x(t,) ],
t

0
(2)

where Q(£)z0, H=0 and R(t)>0. We will pay special attention to
situations where R(t)=0, Furthermore

te =t (3)

£ N’

where N is a positive integer.

The trachking problem takes the following form, Given the system
(1) and a reference trajectory

x,.(8), ty =t 3 tg, (4)
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minimize
e
T T
7= [T -, (6N Q(E) (x(E)=x,(£)) + W (E) R(E) u(t)) dt +
t0
(x(tg) - x.(t)T H (x(tp) - x.(tg)) (5)

where again (3) holds and we assume Q(t)z0, Hz0 and R{t)>0. Again
we we will pay special attention to situations where, R(t)=z0.

3. Solutions to the regulator and tracking problem via
static optimization

The solution to both the regulator and tracking problem is
uniquely determined by the control segquence

= u(t K=0,1,2, 0.0 ,N=1. (6)

uk k) !

Introducing so called block pulse functions vk(t) defined by

Vk(t) 1, te[tkrtk_}_l) '

{7)

vk(t) 0, elsewhere,

the control at each time t, t0 st sty is given by

N-1
uf{t) = E: v (t) uy {8)
k=0
or
-uo .
b |
u(t)=[v0(t}1m vl(t)Im vz(t)Im...vN_l(t)Im] u, P (%)
_uN-l..
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where I, are identity matrices of dimension m where m is the
dimension of the control vector u(t). Equation (9) can be written
as

u(t) = v(t) v, (10)
where

_ T T T T T
U={ Ug U) Uy eevwvaly o ] (11)

is a vector of length mN and

V(t) = [ VoI, VI VoI .....vg T ] (12}

0"m 1™m m N-~1"m
is a matrix with dimensions m x mN. If we enter {10) into the
system equation (1) the solution for x(t) may be written as

te
x(t) = 2(t,t) x(t,) +[ $(t,s) B(s) V(s) ds U, tostst,,  (13)
t0
where % is the state transition matrix belonging to system (1).
Equation (13) can be written as

X(t) = &(t,ty) x(ty) + I (t,t,) U, (14)
where
t
r (€, ty) = [ 2(t,s) B(s) V(s) ds (15)
%o

which is a n x mN dimensional matrix where n equals the dimension
of system (1). Entering (14) into the regulator c¢riterion (2)

results in
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[}
il

T(U,%(tg))

It

[B(te, to)X(Eg)+T (Ee, t)UIT H [8(t,,to)x(t,) + T (e, t0)U)

te

+ j [t £g)x(tg) + Ty (e, £)UIT @(E) (8(E,EX(EY) + Iy (E,£y)U)
tO

T

+ Ul vlgt) R(E) V() U ] at

which can be written as

T(U,x(ty)) = xT(to) H' x(ty) + 2 ul u x(ty) + vl R’ U (16)
where
e
T T
Hf = 27 (tp,tg) H 8(tg,ty) + I &(t,ty) Q(t) ¥(t,t,) at (17)
t0
vwhich ig a n x n matrix,
te
T T
M= To(tety) H &(t,,t,) + J T (t,ty) Q(t) &(t,t)) dt (18)
tO

which is a mN x n dimensional matrix,

te

s=pT T T
R —-Fv(tf,to) H Fv(tf'to) +[[Fv(t,t0)Q(t)r‘v(t,to)+v (LIR(t)V{t)] dt

t, (19}
which is a mN x mN matrix. Consider the criterion (16). If R’>0,
after completing the square, the criterion (16) becomes
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J = (U+R’_1Hx(to))TR’(U+R'_1Mx(t0))+xT(t0)(H'—MTR'-IM)x(tO) (20)
The control which minimizes (16) is therefore

U= - RO M x(eg), (21a)
and the minimum cost are

I = % (k) (H-MR M) () (21b)

It can be easily seen that R’>0 given the conditions Q(t}z=0, Hz0,
R(t)>0, toststf. Note however that alsc when R(t)z0, the integral
in (19) will be positive definite if over some open time interval
within [tg,t.), the term T (t,t,)Q(E)T (£, £,)+V7 (E)R(E)V(L) is
positive definite., Another possibility for (19) to be positive
definite, when R(E)=0, is when the quadratic term
FT(tf,to)HF(tf,to) is positive definite.

Except for t=t0 solution (21a) is not in Ffeedback form. To
calculate a solution in feedback form using this calculation
scheme, at every sampling instant tk’ k=0,1,2,..,N-1 one has to
solve a new static regulator problem of the following form.

Minimize
t
£ T T
Jk(Uk.x(tk))=J {x7(t) Q(t) x(t) + u (t) R(t) u(t)] dt +
tk -
X (tg) H x(tg) (22)
subjected to equation {1), where
Uy = (s qree oty 10 (23)

of which only uy is used for the actual control. By inspection of
(21a) the solution to the problem (1),(22) is given by
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= —R’-l

Uy k

M, x(t,) (24)

where Mk and Rﬁ are of dimension m(N-k} x n and m({N-k) x m{(N-k)
and given by (18),(19) with t, replaced by tk.

Inserting equation (14) into the tracking criterion (5) results in

T(U,k(Eg), %, (£)) = [B(tg, ty)X(t) T, (te, £ U=x (£.)1H
[8(te, ) X(EI 4T, (Eg b )U=R(£4)] +

t
£
I [{ﬁ(t.to)x(to)+rv(t,t0>U-xr(t)1TQ(t)

%o

{Q(t,tojx(t0)+Fv(t,to)U-xr(t)}+UTVT(t)R(t)V(t)U]dt, tyststo.  (25)

Introducing H’, M, and R’ given by (17),(18),(19) this may be
written as

J(U,x(to),xr(t))=xT(to)H’x(tD)+J1(x(to),xr(t))+2UT(Mx(t0)—L)+UTR'U

{26)
where L, which is a vector of length mN, is given by,
te
T T
L = Tty ty) Hx (tg) + J To(t,tg) Q(E) x,(t) dt, (27a)
o
and finally,
t
£ T T
3y (x(eg) 2 ())=| [ (tra()x, (B) -2 (ErQ) B (ko) x(tq) | at
to
+XT (t ) HX (t,.)-2%" (£ )HB(t ., t ) x(t ) (27b)
r* f r*f r* f £'70 o'’

Note that J, is Iindependent of the control U. Consider the
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criterion (26). If R’>0, after completing the square, the
criterion (26) becomes

3 = (U T () -L)) TRY (UHRY T (x (£ ) 1) )
#x"T () (H/-M"R? M) x () +2xT (£ ) MR T1L-LTR TMLag (28)

Since only the first term of (28) depends on the control the
control which minimizes (28) eguals

U= -r"h M ox(e) - L), (29a)

and the minimum cost are,

J = xT(tO)(H'-HTR'—lﬂ)x(to)—ZXT(tO)MTR’_1L—LTR’_1L&J1. (29b)

The remarks after solution (21) of the regqulator problem also hold
for the tracking problem. The solution at each time instant tk of
the corresponding static tracking problem is given by

(m, X(t )+ ) : (30)

where Ry, M, are the same as in the regulator case and where L is
given by (27a) with t0 replaced by tk' Note that we have derived
explicit expressions for the minimum cost of both the regulator
and tracking problem, which were not derived by Nour Eldin (1971),
Note furthermore that the dimension of the matrices R?, Mk and Lk'
which determine the solution of the regulator and tracking problem
at each time instant tk’ increases linearly with the horizon of
the problem. Note furthermore that except from R/, which equals
the final wm(N-k) rows and columns of R’, opposed to what is
mentioned by Nour Eldin, these matrices have to be recomputed at
each sanmpling instant (Vvan  Willigenburg 1990). From a
computational point of view this 1is very undesirable. The
computation time necessary to compute the solutions (24),(30)
increases drastically with growing dimensions of Ri, M, and Lk,
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while the accuracy of the computation decreases,

From Levis, Schlueter and Athans (1971), Halyo Caglayan (1976) ang
De Kening (1980), it is already known that the digital regulator
pfoblem can be tranaformed into an equivalent discrete-tine
regulator problem with unconstrained ocontrol. A crossternm,
involving the state and the control, appears in the equivalent
discrete-time criterion, which may however be eliminated by
introducing a new control variable (see section 4) . The resulting
system and criterion constitutes a standard discrete-time
regulator problem. To the best knowledge of the author no attempts
have been made in the literature to transform the digital tracking
problem into an equivalent discrete-time problem, with
unconstrained control. In this paper we will present this
transformation. The resulting equivalent discrete-time tracking
problem differs from the standard discrete-time one (Lewis 1986),
However the differences in both problems are minor and we will use
exactly the same line of derivation to derive the digital tracker,
as was used by Lewis to derive the discrete-time tracker. As can
be expected differences in the solutions are also minor. In fact
two extra terms show up in the solution of the digital tracker,

4. Solutions to the regulator and tracking problem via
dynamic optimization

4,1 The equivalent discrete-time regulator and tracking
problem

The derivation of the equivalent discrete-time regulator
problem for continucus-time linear time-varying systems resembles
the derivation in case of time-invariant systems, given by Levis,
Schlueter and Athans (1971). The solution of system (1) 1is given

by

X(E) = @(t, &) x(t,) + I(t, ) u(ty) , telt, by 1),
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k=0'1'2,0',u-1’ (31)

where ¢ is the state transition matrix of system (1},

t
F(t,tk) =[ ¢(t,s) B(s) ds (32)

Ex

Inserting t=t, 4 in {31) we have

Xppq = @k X, + Fk u, (33a)
where

X = x(gk), {33b)
u = u(tk), (33c) |
& = ®(tp .t (334) |
Fk = F(tk+1,tk). {33e)

The system (33) is called the equivalent discrete-time system
since the behavior of this system is exactly the same as that of
system (1) at the sampling instants, for k=0,1,2,..,N-1, |

The regulator criterion (2) may be written as

N-1
t
J = E: { J k41 [xT(t)Q(t)X(t)+uT(t)R(t)u(t)] dt] + xﬁHxN (34)
t
k=0 X

which, given {(31), eguals !

N-1
J = E: ftk+1ix§¢T(t,tk)Q(t)w(t,tk)xk+zx£¢T(t,tk)Q(t)r(t,tk}uk
k=0 = %k , |
+u£(Rk+1"T(t,tk)Q(t)l‘(t,tk))uk} dt] + xgﬂxn. (35) |
!
Introducing,
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t

0 = J K41 5T(e,t,) Q(t) B(t,t,) at, (36a)
"
t

M, = I k1 9T (e, 6,) QUE) T(t,ty) dat, (36b)
Ty
t

R = [ B Rty + TTeg) o(8) Tbty) at, (36c)
t
X

brings us in a position, after having stated the equivalent
discrete~-time system (33), to state the equivalent discrete-time
criterion

N-1
- T T T T
J = E: [xk Qk Xy + 2 Xy Hk uk+ uy Rk uk] + Ay H Xy (37)
k=0

where Qe My and R, are given by (36). From (36) it can be seen
that Q(t)z0, and R(t)>0 implies )20, and R,>0. However by
inspection of (36c) it can be seen that 1if R(t)z0, and
FT(t,tk)Q(t)F(t,tk)+R(t) is positive definite over some open time
interval within [tk’tk+1) then also R;>0. In the sequel of the
paper wWe will assume R, >0. The original regulator problem is
equivalent to the discrete-time regulator problem given by (33)
and (37). Note that the equivalent discrete-time system reflects
the system bkehavior at the sampling instants, whereas the
discrete-time criterion reflects the continuous costs of the
original problem. We are not faced with the problem of searching a
proper discrete-time criterion that leads to a satisfactory
continucus-time behavior. The criterion simply arises from the
original problem. Note also that this discrete-time criterion has
another structure then the usual one, since it contains a
crossterm 2x£Mkuk. In other words using the usual discrete time
criterion will never result in an optimal continuous-tine
behavior!
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The procedure to derive the equivalent discrete-time tracking
problem proceeds alonyg exactly the same lines, Substituting the
solution (31) of system (1) into the tracking criterion (5)
results in

N-1
t
J = E: [ I k+1 [xﬁQT(t;tk)Q(t)@(t,tk)xk+2x£¢T(t,tk)Q(t)F(t,tk)uk+
x=0 Yk
T T
(R 4T (6, £)Q(E)T (L, £ ) Juy
-2x¥(t)Q(t)@(t.tk)xk-ZXE(t)Q(t)F(t,tk)uk+x$(t)Q(t)xr(t)] dt

T T
+ xNHxN - 2xr(tf)HxN + xr(tf)er(tf). (38)

Introducing again Qs My and Ry given by (36) and also

t
L, = j k1 xL(t) Q(t) B(t,t,) dt, (39a)
tx
_ ke .
Ty = I x.(t) () I'(t,t,) dt, (39b)
Ey
p1 '
X, = J X0 (t) Q(t) x.(t) dt, (39¢)
t
K

the tracking criterion becones

N-1
_ T T T _ _ T
J = E: [kukxk+ 2xkr-1kuk + ukRkuk 2kak 2Tkuk+xk] + xNHxN
k=0 T P
—2xr(tf)}{xN + xr(tf}ﬂxr(tf). {(40)

The eguivalent discrete-time tracking problem is determined by the
equivalent discrete-time systenm (33) and the eguivalent
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discrete-time criterion (40), where the equivalent discrete-time
criterion matrices are given by (36), and (39).

4.2 Solutions of the equivalent discrete-time regulator and
tracking problem

It has already been mentioned that the egquivalent
discrete-time regulator problem (33),(37) can be transformed into
a standard discrete-time regulator problem where the criterion no
longer contains a cross term 2x§Mkuk {Levis, Schlueter and Athans
1971, Halyo and Caglayan 1976, De Koning 1980). By introducing a
new control variable ui which satisfies
-1

+ R, "M

uf = u, X (41)

T
x *x

the equivalent discrete-time éystem {33a) and the criterion (37)
may be written as

Kpeg1 = @ﬁ X + Fk ui, (42}
N~1
- T T T
J = E: [xk Qp ¥+ up” Ry ug ] + X H Xy, (43)
k=0
where

3, = &, - I, R My, (44a)
_ _ -1 T
Qf =0, - M R M. (44b)

Applying the control (41) to system (42) results in exactly the
same state evolution and costs as applying the original control to
the original system (33a). Therefore the discrete-time regulator
problem (42),(43) is equivalent to the original one. The solution
of the problem (42),(43) is well known and given by Lewis (1986)
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uf=-Kf Xps k=0,1,2,..,N-1, {45a)
Ki=(TTs, . T +R, ) TS, . 87 (45b)
K~ FeSket k™) TS Pir
=g+ T T T ~
5=k Sxa1®h Kk (RcTieSpaa D Kt Qs Sy=H, (45¢)

and the‘corresponding costs are given by

J = xgsoxo. (45e)
Equation (45c) is written in a different form for reasons that
will become clear later, As a matter of fact several forms of
{(45c) are well known. The solution (45) holds for R, >0 and Qk'ao.
Levis, Schlueter and Athans (1971) proved for 1linear
time-invariant systems that Q=0, R=0, implies Qizo . The proof
however, did not make use of the time-invariant nature of the
system and cost matrices, so it also holds in the time-~varying
cage. For the sake of completeness we repeat it.

Consider the cost of the digital requlator over [tk’tk+1)' i.e.

J

t
K+l o o
K X" (L) Q(t)x(t)+u" (t)R(t)u(t)dt. (46a)

tyx

If a piecewise constant control u, is applied this becomes

_ JT T T
Jk— XkaXk + 2kakuk + ukRkuk‘ (46b)
If

— _p=1,T
u = Rk kak (46cC)
then

_ LT _ -1..F T _ LT _ -1..T
Jk = xk[Qk 2MkRk Mk+MkRkMk]xk = xk[Qk MkRk Mk]xk' {46d)

Given (46a) and Q(t)=0, R(t)z=0 it follows that J,20. Then from

(46d), which holds for alil Xy s it follows that
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QL = QM. k iy 20.

Considering the transformation of the control (41) and given the
solution (45) the optimal control for the original system (33a) is
given by

_ -1 T
u, = ~(KL + RyH) Xy (47)

Defining the feedback Kk for the original system (33a) by

u, = -Ky Xy (48)
then clearly

_ -1, T
K = K + R M. (49)

Entering equation (44a}, into (45b), and inserting the result into
(49) gives

-1 T -1, T

Ky = (TySyep 1T Ree) ITES )y (9 TRy M) +Ry My
_ -1,.T T ~1,T
= (T383a Tyt Ry) T (T 8ypn B TSy iR v M) Ry My
= (85, . [ +R) LIS, 12, Th8, TR -1 T+(F IR )R uT)
kSk+1 xRk o1 T TSk xRk Kx+17k My
~ -1
= (T35 TicHRy) (TS k+1Qk+Mk) (50}

We just mentioned that eguation (45c) can be written in several
forms (Lewis 1986). One of them is called the Joseph stabilized
form

T T

Sy = (Bf = TyKL )" Sy (8 = TyKf )+ KERy Kf + Of (51)

which is known for its good numerical performance. 1f we insert
(44) and (49) into (51} the term involving Spe1 does not change
since the closed loop behavior of the original system (33a) eguals
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the behavior of system (42). So we have using (50)

e - T . =1, T\ T U . SR
Sp= (3 TKye) "8y q (B TKy ) + (K -Ry "HL) "Ry (Ky =Ry "My ) +Q) -M R M

o e DT o7 T TT
Skt 1 2k BBk 1 DRk K kS k42 B R 1S e 2 TR R Ry Ky =Ky My =My K
-1,T -1, T
R - R T
7 p 0y T, T T T P
=Sk 1 B Ky (R 8y T ) Ry Ry (T3 Sy B M) = (83,8 T M ) TK 4,
=0Ts. & -(8TS, T +M_}K +Q (52)
kok+1 0% (B Sy Tyt YK 40y -

Since Sk’ Qk’ k=0,1,2,..,N are symmetric the second term in (52)
i=s symmetric so {52) may be written as

T I T
Sk Bxr1 Py (T Sy g B ) +0)

R R T
=S i1 By Ky (R TSy Ty ) Ky 40y

(53)
which is of exactly the same form as (45c).

Summarizing, the solution to the equivalent discrete-time
regulator problem (33),(37) is given by (50),(53) i.e.

u =K, %, k=0,1,2,..,N-1, (54a)
Kk=(F£Sk+1Fk+Rk)—1(F£Sk+l¢k+mi), (54b)
skmdsisk ﬂ(bk-xi(r‘isk DRI KA, Sy=H, (54c)
J =x§$0x0, (544)

where the equivalent discrete-time system matrices are given by
(33) and the eguivalent discrete-time criterion matrices by (36).

In deriving the solution of the egquivalent discrete-time tracking
problem we again use the transformation (41). After application we
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can write for the equivalent discrete-time tracking criterion (40)

N-1
J = xTQ'x +u'TR w!/~2L %, —2T, u!+X +xTHx —2xT(t JH%

R UF L R e 2L X) —2Ty U Xy PR RNy meX () B

k=0 g

+xr(tf)er(tf) (55)

where
-1..T

L = Ly = TRy My (56}

and Qi is given by (44b}.

We will now make use of exactly the same line of derivation used
by Lewis to derive the discrete-time tracker, to derive a solution
for the eguivalent discrete-time tracking problem ({(42}),(55). We
will use general results of the so called discrete non linear
optimal controller (Lewis 1986). Furthermore it will turn out
convenient to treat the problem where 1/2J is minimized in stead
of J in (56), which of course will not affect the solution. The’
costate equation of the resulting discrete-time tracking problen

equals

= T - T
A = M Mep X < B (57)
The stationarity condition is given by

_ T o7
0 = MpA,, + R uf = Ty, (58)
so the optimal control ecquals

_ o) T . .
uf = -RT (T Ay — Ty ). (59)
The boundary conditions are given by X, and
Ay = Hxg - H X (te) {60)
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As assumed by Lewis (1986) in deriving the discrete-time tracker,
we now assume that the costate at each time instant k is of the
following form

(61)

wvhich is true, considering the boundary condition (61), for k=N if

Sy = H {62)
and
vy = H x (tp). (63)

Using the system equation (42), the expression for the optimal
contrel (59), and the assumption (61) we may write

Crre o=l T -1 -1, T
X1 " TRy TSk 1%k TkBk TkVike 1 TkBx Tk (64)

50

_ -1 1 -1,.T -1,
=(I4T, R, T8 (B AT RUTY VTR (65)

Xyt kB TkSk+1!

Using the costate equation (57), the assumption (61) and the
result just obtained (65) we may write

_ v g s T =-1..T -1 -1..T -1_T
MSE¥k VR Sy (TR TS 1) T (REXAT R Ty vy o T Ry TT ) 404Xy
p :
o TR P {66)

Skipping Ay in equation (66) and collectihg all terms in X
results in

_ T -1 -1

(=8t @f Sy (TR TS, g) T8H0L ) %
,T -1.T -1, -1.T

FOVARE T8y g (TH R TSy 9) TR TV

+2:Ts “1rTg

-1 -1,T T T
k Fken (TR TiSpg) TRy Tyl Vi "Iy 150, (67)

k 'k
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Again following Lewis equation (67), which represents the costate
equation, must heold foxr all Xy given any Xy SO the bracketed
terms must individually vanish. If we consider the bracketed term
preceding Xy after application of the matrix inversion lemma we
may write

T

1
—& ! -_
Sp=% [ Sp417 5k

T
T (T3 8y TR

-1 T
WSk R TiSpar 3 %% Q- (68)

Considering the second bracketed term in (67) and again applying
the matrix inversion lemma one may write
1

~ T_,,T T -1.T
V= U2 =24 8y P TSy MRy T 1 Vi

T -1_T T
8141 Tk TS Tt R) Ty + D - (69)

- @!T
k+1'k k k

k
As can be seen from the recursions (68), (69) which run backward
in time, and can be calculated off-line, the assumption (61} was a
valid one. Equation (68) eguals (45c) again written in a different
form. The control determined by (59), given the valid assumption
{61} can be written as

=1

_ _o-1.T
= -R Ty (s AR (70}

T
Yk x+1%k+1 " Vke k"
Equation (70) presents the control at time k as a function of the
state at time k+1. This undesirable result can be overcome by
insertion of the system equation (42}

-1 -1,T

oL -1
af = ~Rp TSy ) (B AT W 4R Ty vy 4Ry Ty (71)

Multiplying both sides with R and solving for Uy results in
_ T -1, T T T
ui = (Rk+rksk+lrk) ( stk+l¢ﬁxk+rkvk+1+Tk)' (72)

The solution to the discrete-time tracking problem (42), (55) is
given by (68),(69) and (72) and can be written in the following

form
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-1 .T

Ke=C Ry + Ty 8ppq Ty ) 7 T Sy 8 (73a)
1 p -1
Ke=( R + [y 8, T, )7ETL, (73b)
2_ T -1
Ki=( R + Ty S, T )5 (73c)
—_ 1 2 .7
u£~ K! Xy, + Kk Viep T K Tk' (73e}
5, =818 8r - KIT( R+T'%S, .T.) K! +Q/, S =H (73%)
K%k Sk+1%k T Kk RetDySpqalyd K #Qp, Sy=H,
_ _ T . T -
vi=( o = T K0T v - ket T vy=Hx_(t) . (73q)

The criterion matrices are given by (36), (39), (44b), and (56)
and the system matrices by (42) and (44a). If we compare this
solution to the solution (45) of the regulator problem it is
apparent that the feedback for both problems is the same since
{73a), {(73f) equal (45b), (45c). Remember that both solutions hold
for the system (42), so after application of the transformation
(41). The solution for the original system {(33a) in case of the
regulator problem was given by (54). In deriving the solution of
the tracking problem for the original system (33a) since the
feedback of the equivalent problems (73), (4%) is the same we may
copy the feedback equations (54b) and (54c).

T -1, T

K =(Ty8) TR ) T (TS 12, 7MY, (74a)
. T, T

Sk =015 x1 Bk Kk (T Sy TR Ky 40y (74b)

Furthermore the feedback gains Ki and Kﬁ are not affected by the

transformation (41), so (73e) becomes

__ 1 2T
U = kak+Kkvk+1+Kka‘ (740)
Using (44a), (44b) and (48) in (73¢) and remembering again that
the closed loop system behavior of (33) and (42) is the same we

are left with
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e e =L BT =1 TP
V= (2 T K )V gy = (K mRy M ) P+ (T =Ty Ry "My )
T T
=( 2 - T} KT Vipr ~ K To+ L, (744)

which is of exactly the same form as {73g). Summarizing the
solution to the eguivalent discrete-time tracking problenm (33),
(40) is given by (73b), (73c¢c), {(73h), (73i), and (74) . Note that
we did not derive an expression for the cost J. This however can
be done. The result is presented in the companion paper (Van
Willigenburg and De Koning 1990) which treats the case of linear
systems disturbed by additive white noise and incomplete state
information at the sampling instants. There the expression for the
cost J arises naturally. Note furthermore that from a
computational point of view the solutions presented in this
section are very attractive, since the dimension of the matrices
that make up the recursions are small, and independent of the
horizon of the problem.

5. Conclusions

We presented solutions to the digital optimal regulator and
tracking problem for deterministic time-varying systems with
complete state information at the sampling instants, based on both
static and dynamic optimization. The solutions, hased on dynamic
optimization, are very well suited for numerical computation since
they consist of Riccati type recursions which run backward in
time. The conmputaticn of these recursions however is not
straightforward since they demand the computation of integrals
involving the state transition matrix of time-varying systems.
These problems have been solved in another paper {Van Willigenburg
1990) which presents numerical procedures to compute the
solutions. We demonstrated that solutions based on static
optimization are impractical from a computational peoint of view,
especially when the horizon of the problem becomes large.

The digital regulator result for time-varying systems is
especially important if a digital perturbation controller, based '
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on linearized dynamice, has to be designed for a continuous-time
non linear system that tracks a reference trajectory e.g. a robot
manipulator executing a prescribed movement. The linearized
dynamics in this case constitute a time-varying system. The result
of the digital tracker is new and can be used in all situations
where a linear system, controlled by a computer, has to track a
reference trajectory e.g. a cartesian type robot that executes a
prescribed movement.

Our approach treats the "real" digital control problems. Generally
digital control problems are approximated by discrete-time control
problems which completely disregard the inter-sample behavior.
Obviously in our case we are not confronted with the problem of
choosing a discrete-time ecriterion which results in a satisfactory
continuous-time behavior. Furthermore our approach does not demand
a "small" sampling time to prevent undesirable inter-sample
behavior. For instance in the case of robot control this is very
important, since a number of applications demand a great number of
on-line computations, and sampling times are of the order of 10mS.

A natural extension of this paper is to investigate the digital
optimal regulator and tracking problem in case of stochastic
systems and incomplete state information. The solutions to these
problems have been presented in a companion paper (Van
Willigenburg and De Koning,  1990). The problems turn out to be
certainty equivalent so we may use the results presented in this
paper where the state is replaced by its estimate.
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L.G. VAN WILLIGENBURG, W.L. DE KONING

THE DIGITAL OPTIMAL REGULATOR AND TRACKER FOR
STOCHASTIC TIME-VARYING SYSTEMS

Abstract

The general approach to solve digital control problems is to
approximate them by discrete-time control problems. In this paper
we consider digital control problems without making any
approximatiocns, i.e. we solve problems involving continuocus-time
quadratic criteria. We solve the digital optiﬁal regulator and
tracking problem where the continuous-time system is 1linear
time-varying, and disturbed by additive white noise, and the state
information at the sampling instants incomplete, and corrupted by
additive white noise. The control is piecewise constant. Both the
regulator and tracking ‘problem turn out to be certainty
equivalent, The solutions to both the regulator and tracking
problem therefore consist of the well known discrete-time Kalman
one step ahead predictor, and a feedback generated by a Riccati
type recursion that runs backwards in time. In case of the
tracking problem the feedforward is also generated by a recursion
that runs backwards in time. Both recursions can be computed
off-line., Expressions for the minimum cost of both problenms,
explicit in the system, criterion and covariance matrices, are
derived. In a companion paper we treat the numerical computation

which is not straightforward.

Keywords digital optimal control, regulator, tracker, linear
time-varying systems

1. Introduction

In many practical situations we are faced with a continuous-time
plant, controlled by a digital computer. It is common pracfice to
approximate the associated digital control problems by
discrete~time control problems which only considef the system
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pehavior at the sampling instants (Ackermann, 1985). In these
cases the inter-sample behavior is completely disregarded. Two
main disadvantages of this approach should be mentioned. The
sampling time has to be chosen small enough to prevent undesirable
inter-sample behavior. For instance in the case of robot contrel,
where the computational burden on the computer is high, this
presents a serious limitation. Furthermore a discrete-time
criterion has to be searched for, which leads to a satisfactory
continuous-time behavior. Both the choice of this criterion and
the choice of the sampling time are often reported to be a problem
(Franklin and Powell, 1980, Astrom and Wittenmark, 1984). In this
paper the digital control problems are solved without making any
approximations since we consider continuous-time ‘criteria. The
digital optimal regulator for time-varying systems has already
been considered by Halyo and Caglayan (1976). They however did not
derive an expression for the minimum cost of the problem neither
did they specify a numerical gsolution. The numerical solution is
not straightforward since it involves the computation of integrals
involving the state-transition matrix of time-varying systems. De
Koning (1980a,b) considered the digital optimal regulator for
time-invariant systems and derived an expression for the minimum
coat of the problem, explicit in the system, criterion and
covariance matrices.

We will present the digital optimal requlator and tracker for
time-varying systems including expressions for the minimum cost
ekplicit in the system, criterion and covariance matrices. In a
companion paper (Van Willigenburg 1990) we treat the numerical
computation. It is believed that the regulator result permits for
the first time the design and computation of a digital optimal
perturbation contreller for non linear systems that have to track
reference trajectories. Important applications are e.g. a robot
performing a prescribed motion or a batch fermentation process,
where in both cases the linearized dynamics about the trajectory
constitute a time-varying system. The digital optimal tracker has
never been considered in the literature. This is remarkable
pecause it can be applied in all situations were a linear systemn,
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controiled by a digital computer, has %o track a reference
trajectory, e.g. a cartesian type robot performing a prescribed
motion.

2. Problem formulations

Consider the stochastic continuous-time linear time-varying system

x(t) = A(t) x(t) + B(t) u(t) + v(t), (1a)

where A(t) and B{(t) are the system matrices and {v(t)) a white
noise process with possibly time-varying intensity, with

E{v(t)} = 0, cov(v(t),v(s)) = V(L) §(t-s) {1b)
and
E{x{0)} = X(0), cov(x(0),x(0)) = G, G=0. (1c)

The system is controlled by a digital computer, so measurements
are taken at the sampling instants i.e.

y(tk) = C(tk) X(tk) + w(tk), k=0,1,2,3,.... (1d)

where tk' k=0,1,2,.. are the, not necessarily equidistant,
sanpling instants and {w(tk}} a discrete-time white noise process
independent of {v(t)), with

E(w(ty))} = 0, cov(w(ty),w(t,)) = W(t,) 8(t,-t). (1e)
The control is piecewise constant i.e.

u(ty = u(t teft,,t k=0,1,2,3.... (1f)

x) k1)

The information available to compute the control u, consists of
the measurements and the contrels up to tk—l' i.e., {y(ti),
i=0,1,2,..,k-1} and {u(ty), i=0,1,2,..,k~1}., In that case the time
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available for the computer to compute u(tk) equals tk—tk-l' We may
also assume the information to be {y(ty), i=9,1,2,..,k} and
{u(ti), i=0,1,2,..,k-1} in case the computation time is negligible
compared to tk'tk-l' All the results of this paper are still valid
in that case.

The digital optimal regulator problem for the system (1) is to
minimize

tf T T T
J =E ( I XT({t) Q(t) x({t) + u (t) R(t) uf{t) dt + x (tf) H x(tf) ]

t0

(2)

where E denotes the expectation operator, and @Q(t)=z0, Hz0 and
R(t)>0. We will pay special attention to situations where R(t)z0.
Furthermore
t, =t (3)

vhere N is a positive integer.

The digital optimal tracking problem takes the following forn.
Given the system {1) and a reference trajectory

X, (t), tystst, (4)
minimize
te
- T T
J =K { I (x(t)-xr(t)) Q(t) (x(t)—xr(t)) + u(t) R{t) u(t) dt +
t
0

(x(tg) = % (£ NTH (x(t) - x.(tg) ] (5)
where furthermore (3} holds, and again Q(t)z0, Hz0 and R({t)>0. As

in the regulator case we will pay special attention to situations
where R{t)=z0.
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3. The eguivalent discrete-time regulator and tracking problem.

To solve the digital optimal regulator and tracking problen
presented in the previous chapter, we first transform them into so
called equivalent discrete-time problems (Levis, Schlueter and
Athans, 1971, Halye and Caglayan, 1976, De Koning, 1980, Van
Willigenburg and De Koning, 1990), with unconstrained control. The
derivation of the equivalent discrete-time regulator problem for
stochastic continuous-time linear time-varying systems resembles
the derivation in case of time-invariant systems, given by de
Koning (1980). Equation (1) is defined in terms of the stochastic
integral equation '

t t t
X(E) = x(to) + IA(s)x(s)ds + [B(s)u(s)ds + [dﬁ(s), (6a)
t0 t0 t0

where B(t) 1s a zero-mean process with independent increments and

E{p(t)}=0, cov{dB({t),dapg(t))= v(t)at. {6b)

The solution of system (1) is given by

x(t) = $(t,t,) x(ty) + Tt t) ulty) + vit,t,), telt, t,+1),
x=0,1,2,..,8-1, (7)

where

% is the state transition matrix of system (1),

t
r(t,t,) =J 3(t,s) B(s) ds (8)

tk
and
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t
v{t.t,) = I @(t,s) dg(s). (9)
t

k

From (9) it follows that
E(v{t,t,)) =0 (10a)

and

€
T T T
E(v(t, t,) v(t,t)) = ” 2(t,A) E(AB(r) A7 () @ (t,u)

Ty
t

= J &(t,r) V(L) @T(t,A) dA = V(t,tk). (10b)

ty
For t=tk+1 we have
Xppp = O Xy TR vy vy {1la)
and furthermore
Y = Cp Xy + oW, {11b)
where
X, = x(ty), (11c)
Y = ¥(t), (11d)
u, = u(tk), {1lie)
Qk = Q(tk+1,tk), {11f)
rk = r(tk+1rtk)r (11g)
Cp = C(ty), (llﬁ)
Ve = VI bd s Ve = V50, (111)
Wy = w(tk), Wk = W(tk). (113)
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The system (11) is called the equivalent discrete-time system
since the behavior of this system is exactly the same as that of
system (1) at the sampling instants, for k=0,1,2,..,N-1.

The stochastic regulator criterion (2) may be written as
N-1

J= 2: Itk+1xT(t)Q(t)x(t)+uT(t)R(t)u(t)dt+x3HxH (12)
k=0 Tk

which, given (7), equals

N-1

t
J= E[E: J k+1 xiQT(t,tk)Q(t)Q(t,tk)xk+2x£@T(t,tk)Q(t)F(t,tk)uk

t

k=0 "k

AU (RATT (1,8, ) Q(E)T(E, £,) )u T (£, £ ) Q(E)V(E, £))

K

+2x§¢T(t,tk)Q(t)v(t,tk)+2u£FT(t,tk)Q(t)VT(t,tk) at . (13)

Introducing,
t

o = [ Fe (et art) e,y at, (142)
tk
t

M, = I 1T (¢, t,) o(t) T(t,t)) at, (14b)
tk
t

R = [ “HRee) + TTie b)) o)) Tt g ek, (14c)
t
k

and splitting up the integral results in
N-1

- T 'y T
J = E [ 2: xk Qk Xk + 2 xk Hk uk+ uk Rk uk
k=0
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Itk+1 T ,T

+ 2 x 87(t,t) Q(E) V(E,E) dt

ot

k

t
k+l, T
+ j 2 up TH(t,t,) v(tt) dt
x

t
+ I KHgT (e, 6,) Q(b) vit,t,) dt |. (15)
t

k

The state Xk depends only on the increments dg{t), te{to,tk} on x,
and on WorWares Wy g4 while vit, L), tatk depends only on the
increments 4g(t), te(ty, t-ty ], so X and v(t,t ), tzt are
independent. Because u depends only on Yor¥yeYoreo1¥p g4 thus on
Kot VorVars o sV a s WoaWyyoo Wy o and since (vg} is independent of
{wk}, u, is also independent of v(t,tk), tztk. Therefore

t
E [ I Kl xp 3, (t,t,) O(F) v(E,ty) at ]

tx

t
= I K1y B(xp) 25(t,t,) Q(E) E(v(t,ty)) at ] = 0 (16)
t

k
and

t
E [ J ¥ up To(t,ty) (8) Vit at ]

tx

t
= f K+l B(ul) Th(t,t,) Q(t) E(V(E,t,)) at ] = 0. (17)
£y
Furthermore,
tk+1 T
E j Vit ) Qt) vi(t,t,) dt
t

k
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t _
_ I k+1 Lr{E(V(t, 5 )V (E,£,)) Q(t)] dt
tx
e
= I tr(V(t,t,) Q(t)) at
T

= W(tk‘l‘l'tk) = Fk‘ {18)
Now we are in a position, after having stated the equivalent
discrete-time system ({11), to state the equivalent discrete-time
criterion for the reguliator problem,

N-1 N-1
_ T T T T
J = E[ E:[xquxk+ 2kakuk + ukRkuk + xNHxN ] +§: ¥y {19)
k=0 k=0

where Qk' Mk and Rk are gilven by (14), If Q(t)=0, and R(t)>0, as
assumed in chapter 2, by inspection of {14) it can be seen that
0y 20, and R,>0. However by inspection of (l4c) it can be seen that
if R(t)zo‘and FT(t,tk)Q(t)F(t,tk)+R(t) is positive definite over
some open -time interval within [tk’tk+1) then also Rk>0. In the
sequel of the paper we will assume R, >0. Finally we have

t
7y = j 1 erpv(e,ty) Qb)) at. (20)

"
S0 the original digital optimal regulator problem is eguivalent to
the discrete-time regulator problem given by (11) and (19), where
the equivalent discrete-time criterion matrices are given by (14)
and (20)}. Note that the part involving Ty in (19) is deterministic
and independent of the control, so the problem of minimizing J,
with respect to the control, is equivalent to minimizing

N-1
_ T i T T
g7’ = E E;[kukxk+ 2kakuk + ukRkuk] + xNHxN ]. (21)
=0
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In deriving the solution of the digital optimal regulator problem
we will consider the minimization of (21).

The procedure to derive the egquivalent discrete-time tracking
problem proceads along exactly the same lines. Substituting the
solution (7) of system (1) into the tracking criterion (5) results
in

N=-1

t
J = E[ E: I k+1 387 (E,£,)Q(E) B, £, ) X, 423027 (£,£,) Q(EIT (L, b)) u,+

k=0 Sk

-l-uT

k(Rk+FT(t,tk) Q(t)r‘(t,tk) )uk+VT(trtk) Q(t)V(titk)

+2x£@T(t,tk)Q(t)v(t,tk)+2u§rT(t,tk)Q(t)vT(t,tk)

-2 (E)Q (L) B (E,t,) X, ~2X (£) QUE)T (b, ) 0, ~2xL (£) Q(E) Vv (£, £})
X (E)Q(E) X (E) dt | + xihx, - 237 (L Hxy + X7 (E)Hx (E.). (22)

Comparing the tracking criterion (22) to the regulator criterion
(13) we see that, except for terms involving the reference
trajectory Xt they are exactly the same. Since the reference

trajectory ¥.(t), Ostst is deterministic,

£

t
E [ J k+l Xp(t) Q(t) v(t,t,) at ]

£y

t

= f M xT(t) o(x) E(v(t,t,)) at ] = 0. (23)
t
k

Introducing again Ry, M, and Q given by (14} and also
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t
LR=I LT (et et by at, (24a)
ty
t
Tk=f KT (B)Q(EIT (¢, b, ) at, (24b)
Y
t
xk=j LT et x (t)at, (24c)
t
K

and given (16),{17) and (23) the equivalent discrete-time tracking
criterion 3 becomes

N-1
_ T T T _ - T
J = E[ Ej [kukxk+ 2kakuk + ukRkuk 2kak 2Tkuk] + xNHxN
k=0 N-1
—2xT (t )Hx, | + XT(E.)HX_(t.) + ) X, + 7 (25)
r+f N r''f r'f k k*
k=0

The equivalent discrete-time tracking problem is determined by the
equivalent discrete-time system (11) and the equivalent
discrete-time ocriterion (25), where the egquivalent discrete-~time
criterion matrices are given by (14),(20) and (24) . Note that the
part outside the brackets of the expectation operator in (25) is
deterministic and independent of the control. So the minimization
of (25), with respect to the control, is egquivalent Vto the
minimization of

N-1
N T T T _ _ T
J! = E[ E: [kukxk+ 2kakuk + ukRkuk 2kak 2Tkuk] + xNHxN
k=0
—2xT (t,)Hx 26
p (BelHixy |- (26)

In deriving the soluticn of the digital optimal tracking problem
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we will consider the minimization of (26).

4. Solution to the esquivalent discrete-time regulator problem

The derivation of the solution of the equivalent discrete-time
regulator problem resembles the one presented by De Koning (1980).
_He considered randomly sampled linear time-invariant systems. The
case of linear time-varying systems and deterministic sampling
resembles this situation where the random system matrices now
become deterministic.

The conditional mean ﬁk and the covariance Pk of the state x, are
defined as

% =B Ul Y Uy ), (27)
where

¥ypo1 = { Yor¥y Yoreei¥pqhs (28a)
Uk-l = { uo,ulfuz,..,uk_l}, {28b)
and

P = E { ¥ %), (29a)
where

e = X - Xy (29b)

It is well known that Qk is the best linear estimator of X, on the

basis of ¥ in the sense that Pk is minimal., It is well

x-1Y%k-1
known that for the equivalent discrete-time system (11} the
estimator is generated by the discrete-time Kalman cone steps ahead
predictor. In deriving the digital optimal requlator we will need
the following facts. If % is an arbitrary matrix and X a

stochastic vector then
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B(x Zx, |Y, U }=E{x 2% }+E(X 2%, |Y, ., U, _, }=Rogx, +tr(2P$), (30)
K"kt "k~17 "k~1 kK™7k kK" k! "k=-1""k-1 k" k /!
where the conditional covariance Pﬁ is given by

(31)

C_ ~T =~
Pp= E{Xyp Xp|¥p q:Up g}

Furthermore if x,y and z are arbitrary stochastic variables then
o{y) > o(x) » E{z|x} = E{E{z]|y}[x}. {32a)

where o(x) denotes the ¢ algebra generated by x. Furthermore if
£(x,v¥,2} ls an arbitrary function of %,y and z then

E{R{f(x,y,2) [x.,¥}} = B{f(x,¥,3)}. (32b)

Finally since Vi is independent of Xys k=i and {vy ) is independent
of {Wk}

T

E{ (8%, + T)u) v |¥y 1 U, _,} =0, {33a)
T

E { vy Vil ¥ q/Up_q } = Vo (33b)

Considering (21) we define the scalar function

N-1
R T T T T
Ci(Y;.4/U54) = 31n . E E: [kukxk+ 2x) Mou, + ukRkuk] + XHx,
248y -
i N-L1L g
| ¥y 1/U5.4 * (34)

Under suitable existence conditions for the expectations and the
minima (Meier, Larson and Theter, 1971) ¢ in (34) satisfies the
Bellman equation
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Ci(Yi-l’Ui—l)_min E{x Q;x, +2x 1My +ulRlul+Cl+l(Yl,Ui)|Yi_l,ui_1}

i
(35)
with for i=N the initial condition
— T =
CN(YH-I’UN-l)_man E{XNHXNIYN-I'UN—l} = {x Hx ]YN 1’UN-1}
N
= X Hx Htr (HES) (36)
N N
Now suppose that C, (Y 1,U 1) has the form
C (Y, ..U, = E T Y. .,U + o
1¥329/059) = i i-1'7i-1 i
= xiS x + tr (S P° ) + oy {37)

where §;%0 and deterministic, and 84 and oy are not functions of
Uy 4 Considering the bhoundary condition (36}, this is true for
i=N if

s
o

H, (38a)
0. (38b)

N
N

Suppose it is true for i+l, i arbitrary, then we must prove that
it is true for i. From the Bellman eguation (35) we may write

_ T P T T '
i (¥4-1s04y)=min E{xiQixi+2xiﬁiui+uiRiui+E{xi+lsi+1xi+1|Yi'Ui }
i

oYY }'

Since G(Yi,Ui) > oY U._l), and given (32a), this becomes

i-1f

Cy(¥5.1/Y3.4)

N T T
nmén E{x Q x +2X75 M u, +u R u, +x.+1Sl+1 1+1

1
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“i+1|Yi—1'Ui-1}'

Using (33) and the assumption that 8541 and «;,, are not functions

of Uy this may be written as

o T T T T
Ci(Yi—l’Ui—l)—m;n E {xi(Qi+@iSi+1Qi)xi+ui(Ri+FiSi+1Fi)ui+
i

T T
zxi(Mi+QiSi+1Fi)uiIYi-l’Ui-l} Toer (ViSiyq) ¥ Blag, ¥ 90054
From (30) this becomes

Ci(Y, o,Uy )= min |X0(Q, + 818, .8,)%, + ul (R 4018, T )u, +
1 (Fgug Uyog )= min 3 (Q + 248;,,83)%; + MRy 85T

T T T C
2xi(M1+Qisi+1ri)ui]+tr((qi+¢isi+l¢i)Pi]+tr(visi+1)

+E{o, (39)

ir11¥g-10Yg92"
The term between the brackets in equation (39} is a guadratic form
in X; and u;. We want to find the u; that minimizes (39) so the
obvious way to complete the sguare for the term in between the
brackets of (39) is

_ . A M T A
Ci(Y .40V m;n [(ui+Kixi) (Ry+078; 4 Fy) (0 +Rex4)
i

oT T T T A
EACRUDWUR SR CRRUAEREN

T <
+tr[(Qi+¢iSi+lQi)Pi ]+tr{visi{1)+E(“i+1|Y1-11Ui_1}r (40)
where
- T -1, T T
Ki - (Ri+risi+lri) (Fisi+l¢i+mi)' (41)

The minimum is attained when
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A
ui = -Kixi. (42)
If PE in (37) is not a function of U, qr which is true for the
discrete-time Kalman one step ahead predictor for the equivalent
discrete-time system (i1), then Ci(¥y_1+U;.4) has indeed the form
assumed in (37) with
- T _wT T
83 = Q421814187 Ky (RyIT4844T1) Ky (43)

C

kR 1

_ T T
a.—tr[Ki(Ri+FiSi+ll"i) K;P )+tr(ViSi+1)+E{ai+1EYi_l,Ui_l} . (44)
where S5;z0 and deterministic, and 8; and a; not functions of Uiq-
The fact that 8,0 can be seen by writing (43) in the following
form (Van Willigenburg and De Koning, 1990).

e - T _ =1 T T _o-1,T u w-1yT
85 =(8;=T4K,) "8, (8,-T K, )+(K;-R] 'My) R, (K;~R; M;)+Q, ~M,R;"M]. (45)

From (45) it can be seen that since R;=0, 8,20, and Qi-MiREIMEZO
(Van Willigenburg and De Koning, 1990), indeed §,=0. The solution
of the digital optimal regulator problem is therefore given by
(38),(41),..,(44). Given (35), and considering (21), the minimum

value of the cost (19) equals
N-1

J = E(Cy) = E { xgsoxo } * Elog) + ) 7y (46)
k=0

Given (37),(43),{44) and (1¢) and using (32b) this beconmes

N-1 N-1 N-1
=T. = iy T (3]
T=XSgX +tr(5,6) +Z tr(V, 8, . .) +z tr[Ki (Ry+I'38, 1 Ty) KiPi]+z ¥y (47)
k=0 k=0 k=0

The first term on the right side of (47) can be compared to the
cost in the deterministic case (Van Willigenburg and De Koning,
1990). The second term on the right is due to uncertainty in the
initial state, the third term is caused by disturbances acting on
the system, and the fourth by uncertainty in the state estimation.
The fifth term on the right, which showed up in deriving the
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equivalent discrete-time regulator problem, is also caused by
disturbances acting on the system.

Summarizing the solution to the equivalent discrete-time regulator
problem is given by

_ c{' -1, T
K, = (RIS, ) TH(0ys, 2, +10) (48a)
S, = Q +3.8, & -K& (R +FL8, T\ )K s, =H (48b)
k = PSSkt R Rt S Ky Syt
Fay
= —kak, {48¢c)
N-1
T=RS X HEX(8,6)+Y  [EX(V) S, ) +Er KL (R 4TYS, T ) K PE|+2,1, (484)
050%0 0 kSk+1 k Rt TS a T KiePx ) Yok 1
k=0

where §k is generated by the discrete-time Kalman one step ahead
predictor, for the equivalent discrete-time system (11). Replacing
¥;, by Y, only affects the state estimator, which is now
generated by the Kalman filter in stead of the one step ahead
predictor. Finally we remark that clearly, the digital optimal

regulator is certainty equivalent,

5. Solution to the eqguivalent discrete-time tracking problem

Consider the discrete-time tracking criterion (26).

N~1

T

e F T - - T T
F E[ 2: [kukx +2x M u, +u R u, -2L, X, =2T uk]+xNHx 2xr(tf)HxN .

k K'k'k "kk'k Kk k N

(49)

Like in the regulator case we define the scalar function

N-1
C.(Y¥: -,U; .) = min E X210 ¥ 4 2% M U, + WiR U, ~2L, X
i-17Yi-1 k2%k¥k K*k

i i KMkUk
Wapee
AR 1
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T T
-2T, u ] + xNHxN - 2xr(tf)Hfo ¥ (50)

Kk i-1¢Y5.1 |

Again under suitable existence conditions for the expectations and
the minima {50) satisfies the Bellman equation

o T T T _ -
ci(Yi_l,vi_l)~m3nE{xiQixi+2xiHiui+uiRiui 2Lyx;-2T u,

i
+ci+1(Yi'Ui)|Yi-1'Ui-1} (51)

with for i=N the initial condition

. T, _,.T
CN(YN-I’UN—l)"m;n E{xNHxN 2xr(tf)HxH|YN_1,UN_1}

N
Y D R _oAroA T A c
—E{xNHxN 2xr(tf)HxN|YN_l,Un_l} = xNHxN 2xr{tf)HxN+tr(HPN). (52)

Now suppose , according to the case of the discrete-time tracker
presented ‘'by Lewis (1986), that Ci{(¥;.4,U;_,) has the form

o Ty . . T
Ci(¥5_3/U3.9)= E { Xg8y%y-ax My ¥y 0.U5 4 } ooy

= X18,%,~ 2%°W ¢ 53
= X{8;¥,- 2xjW; + tr (8;P)) + «, (53)
where Sizﬂ, si and wi deterministic, and Si' Wi and o; are not

functions of Uige Given the boundary condition (52) this is true
for i=N if

Sy = Hi (54a)
W, = Hx_(t.), (54b)
oy = 0. (54¢)

Suppose it is true for i+i, i arbitrary, then we must prove that
it is true for i. From the Bellman egquation (51) we have
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C, (Y

s T T T - _
i i_l,Ui_l)—mln E{xiqixi”xiMiui*uiRi“i 2Lixi ZTiui

1

T T
* E{xi+1si+1xi+1"2xi+1wi+1|Y1'Ui } + O‘J'.+1|Y'1-1'Ui--1}'
Since o(¥;,Uy) > 0(¥y_4,U;_4), and given (32a), this becones

. T T T - _
Ci(Yi—l’Ui—l)—m;n E{xiQixi+2xiMiui+uiRiUi 2Lixi 2'1‘iui
i
+xT s be - ZxT W + oo, L FY, U,
i+15i+17841 i+1"i+1 i+atri-atvi-ag’

Using (33) and the assumption that Sip1r Wi and oy,, are not
functions of Uy this may be written as

. T s T T
¢4 (¥)_1,Uy_y)=min 3 {xi(Qi+¢iSi+1§i)xi+ui(Ri+FiSi+1Fi)ui+
i
T T T T T T T T
zxi(“1+QiSi+1Fi)“i“xi(2‘1W1+1+2Li)‘“1(2F1W1+1+2Ti)IYi-1fUi-1}

*r (ViSi.p) + Bleg, 0¥y 0050

From {30) this becomes

A

I T T ~ T T
C. (Y = m;? [xi(Qi + ﬁisi+1¢i)xi + ui(Ri+FiSi+1Fi)ui +

i¥iaq:U5.9)

1
A7 T AT, T T T, T T
2% (M3 +®, 84,500y 2Xi(¢i”i+1+bi)‘2“i(riwi+1+Ti’]

T c Y.
tr[(Qi+§iSi+1¢i)Pi ]+ tr(vys, ) + Blag ¥, .U g0, (55)

The term between the brackets of equation (55) is a guadratic
expression in §i and u. Since we want to £ind the vy that

minimizes (55) the obvious way to complete the square for the term
in between the brackets of (55) leads to

Ci(¥g3-1/Ujq)=
a 1 2.7, 7 iy ~ 1 2T
mi“ (U Ry X =KiWy 7K T T (RTS8 1Ty ) (W 4R %y =KWy 7K Ty
i A
T T T T o
PR QU8 By "Ry (RTS8, TR %y
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2Xi”’iwiﬂ”‘i Kiriw1+1 K iT% i)- 2WT+1KiTTT wriIL'+1K TriW1+1 iKiiﬂj

+tr[(qi+¢fsi+1¢i)p§ ]+ Er (ViS00 + Blay,, ¥ o ,U 1) (56)
where

Ky = (Ry#r38¢, T 7S, eps)) (57a)
K] = (Ri+r§si+1ri)‘1rT, (57b)
k? = (Ri+FESi+1Fi)hl. (57¢)
The minimum is attained when

u; = = KX, o+ KiW, + KiT, . (58)

If PC in (37) is not a function of Usqv which is true for the
discrete—time Kalman one step ahead predlctor for the equivalent

discrete-time systen {(11), then cC, (Y. ) has indeed the form

assumed in (53) with 1’

s = Qi+¢ 841%4 Ki(R AT iS40 1)K/ ({59a)
Wy = (8 - TyK,) w.+1 - KETE + LY, (59b)
ay = ~(K} i4q) (2T Tt 190,0) T4 KS $+tr[K (Ry+#T38, T KPS ]

+ tr(vys, 1) F Efay +1|Y 19511, (59¢)

where S, 170, S. and Wi deterministic, ang Si’ Wi and o; are not
functlons of Ui -1° The fact that sizo is obvious from the
regulator case since the eqguaticns that determine the feedback,
(57a) and (59%a}, are exactly the same as in the regulator case.
The solution to the digital optimal tracking problem is therefore
determined by (57), (58) and (59). Given (53), and considering

(26}, the cost (25) is given by
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N-1
. T
J = E(Cy)tx, (te)Hx (tg) + Y Xty
i=0
N-1
_ T . T
= E { XySoXg =~ 2XgH, } + E(ay) + X (to)Hx (tg) + Z X, + g (60)
i=0

which given (54), (59) and (l¢), using (32b), becomes

N-1
_oTe = _,=T T ) T, T, T 2T
T =R,84%, 2xoWo+xr(tf)er(tf)+z X5~ (KyWy ) 7 (2T3+T{W, ) =T, KIT ]
i=0
N-1 N-1 N-1
T T c
+EX(S,G)+) tr(V S, 1)+ tr[Kk(Rk+FkSk+le)KkPk]+z ¥y (61)
i=0 i=0 i=0

The first four terms of equation (61) can be compared to the cost
in the deterministic case. The remaining terms also appeared in
the regulator case and were classified there.

summarizing the solution (54), (57),..,(61) to the equivalent
discrete-time tracking problem is given by

_ T -1, T
Ky = (Rp+TyS, 1) TH(TLS, 1 0,4M0) (62a)
1 T —1.7
Ky = (Rp+T38,, Tp) T, (62b)
2 _ T -1
K2 = (R#TS, T (62c)
u, = - K%, + KXW, + K°T (624d)
k K%k t Ky t KTy
S, = Q 4818, . .& -KL(R.4+To8, . .T.)K., &,=H (62e)
I e ke TS L A U Yl
_ _ T T T _
W, = (3 - TUK) W - KT 4 L, WeHx () (62f)
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N-1
=T C
I=%,5,%, ~2%7 oY +x At HX (to)+tr (s c)+Z [tr[K (R 4T sk+1rk)1<kpk]
k_.
HEX (VS )Xy 7, = (KW ) T (2T 4R, ) =T, K2TT (621)
K k+1 k™ k1 kT xPke ! " TBx Ty

where Qk is again generated by the well known discrete-time Kalman
one step ahead predictor for the discrete-time system (11i}. The
solution matches the one in the deterministic case (Van
Willigenburg and De Koning, 1990). If ¥, is replaced by ¥; then,
as in the regulator xi is generated by the Kalman filtex. clearly
also the digital optimal tracker (62) is certainty equivalent,

6. Conclusions

Generally digital control problems are  approximated by
discrete-time control problems. In this paper we considered "true"
digital control preblems, i.e. without making any approximations.
Using stochastic dynamic programming, we have derived the digital
optimal xregulator and tracker for linear time-varying systenms
disturbed by additive white noise, where the state information at
the sampling instants is incomplete and corrupted by additive
white noise. Both preoblems appear to be certainty eguivalent so
the result equals the deterministic digital optimal regulator and
tracker (Van Willigenburg and De Koning, 1990) where the state is
replaced by its estimate generated by the discrete-time Kalman one
step ahead predictor. The derivations 1in this paper were
fundamentally different from the ones presented in the
deterministic case. Expressions for the cost of both the digital
optimal regulator and tracker have been derived, which are
explicit in the system, criterion, and covariance matrices. In the
deterministic case only an expression for the regulator cost was
presented. The numerical computation of the digital regulator and
tracker, which is not straightforward, is treated in a companion
paper (Van Willigenburg 1990). It is believed that the digital
optimal regulator result permits for the first time the design and
computation of a digital optimal perturbation controller for non
linear systems that have to track reference trajectories, e.g. a
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robot performing a prescribed motion or a fermentation batch
process., The linearized dynamics about the trajectory constitute a
time-varying system.

The digital optimal tracker has never been considered in the
iiterature. This is remarkable since it can be applied in all
situations were a linear system, controlled by a digital computer,
hag to track a reference trajectory, e.g. a cartesian type robot
performing a prescribed motion.
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L.G. VAN WILLIGENBURG

NUHMERICAL PROCEDURES TO COMPUTE THE DIGITAL OPTIMAL REGULATOR AND
TRACKER FOR TIME VARYING SYSTEMS

Abstract

Two numerical procedures to compute the digital optimal regulator
and tracker for 1linear time-varying systems are presented. They
are based on two different solutions of the digital optimal
regulator and tracking problem, one based on static, the other on
dynamic optimization. For several examples it 1is shown that
numerical solutions, obtained from both procedures, are identical.
Finally it is demonstrated that the numerical procedure based on
dynamic optimization is superior with respect to accuracy,
computation time and the use of computer memory.

Keywords digital optimal control, regulator, tracker, linear
time-varying systems, numerical procedures.

1. Introduction

Although in many practical situations we are faced with a
continuous-time plant, controlled by a computer, usual controller
designs never take into account the inter-sample behavior. It is
common practice to approximate digital control problems by
discrete-time problems (Ackermann, 1985)., Two main disadvantages
of this approach should be mentioned. The sampling time has to bhe
chosen small enough to properly approximate the continuous-time
system behavior. For instance in the case of robot control, where
the computational burden on the computer ig high, this presents a
serious limitation. Furthermore a discrete-time criterion has to
be searched for, which leads to a satisfactory continuocus-time
behavior. Both the choice of this criterion and the choice of the
sampling time are often reported to be a problem (Franklin and
Powell, 1980, Astrom and Wittemmark, 1984). Van Willigenburg and
De Koning (1990Ca,b) solved true digital control problems, i.e.

76



