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A method has been proposed for designing both finite-
horizon and infinite-horizon discrete-time reduced
order LOG controls. The method solves the two
recursive Lyapunov equations by UDU factorization,
which is assumed to be more efficient than homotopy
and other methods previously proposed. This method
can be computationally attractive; however, its pre-
sentation also can make it inaccessible to many readers.
The purpose of this note is to present a summary of
these results in a reader friendly form so that the
material can be accessed by many readers.

1. Introduction

A method for solving discrete time optimal reduced
order linear quadratic Gaussian (LQG) control pro-
blems by recursion of UDU factorized Lyapunov
equations is proposed in [7]. This method implements
the results of [6] that modified the optimal projection
method of [1] for the optimal reduced order LQG
solution to guarantee optimality. Developments in [7]
are based on an assumption that the plant has a
varying dimension, hence the paper took additional
effort to ensure that the variability of the plant
dimension is included in all equations, which complic-
ated the presentation. Although it may have theoret-
ical merits, the variability of the plant dimension does
not have to be considered for most applications. The
purpose of this note is to present the major results of
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[7] for the finite horizon problem in a simplified format
that does includé dimensional variability of the plant.
This reduces the number of variables and simplifies the
method for practical applications. Additionally, a
number of issues that were not explicitly or properly
presented in [7] will be covered to ease the under-
standing of the method. There will be no comment on
the results of [6] against those in [1]. Most of the
symbols used in this note are inherited from [7].

2. The Finite Horizon Reduced Order
Optimal LQG Control Problem

The method of [7] is based on the linear time varying
discrete time system

Xip] = @,‘X,' -+ FiUi + v, (1)
yi=Cixi +wi, ()

with x;eR",u; e R",y;eR/, and i=0,1,2,...,
N — 1; the signals v; and w; are system and observation
white noises of zero mean and respective covariances
V; > 0 and W; > 0 with cross covariance Y; such that

Vi Yi i .
[YT . } > 0. The primary problem of finding a

reduced order controller

X1 = FiXi + Kiyi, 3)

Ui = —Lif,', (4)
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(with X; € R™ and n;, <n) that minimizes the
quadratic cost function

i M x
1=down+ 17 [ 2 W][E] @
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where xo and xy are known with Q;(=0T >0) €
R™ Ri(= RT > 0) € R™" and M; € R™™ chosen

such that [5‘ Z] > 0 has been solved in [6] based

on the closed 1001; system
1+1 = ¢le + ‘V (6)

with cost function

= xyQnxN + Zx’rQ, Xy (7)

i=0

where
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The desired controller matrices F;, K; and L, are
computed as

(8)

F; = Hy [® - K)C; — T;LY] G}, )
K= Hi K, (10)
L;=LG". (11)

In this solution, the predetermined dimension n; of
the controller may be made to vary with time. The
design problem addressed by [7] is that of computing

,+1,K G; and L0 that are used in the above con-
troller equations. For i=1,2,...,N—1, the covari-
ance matrix P; of the closed loop state x| satisfies the
Lyapunov recursion

Pl = xlxfl = PO + V!, (12)

r

where

. KT
| Vi B (13)
KYT KWK

and the cost function can be written as

N-1
J' = trace(PyQy) + Z trace(P.Q}). (14)

i=0

By using the Lagrange multiplier method, the mini-
mization of (14) over P; subject to (12) is a two point
boundary value problem that yields a backward
Lyapunov recursion

S; =TS, o+ 0, (15)

where S} is an appropriate matrix of Lagrange mul-
tipliers. It is assumed that for i=0,1,2,...,N,
matrices P; and S} can be compatibly partitioned as

Pl = P}T P'p, S = S}T S'!z, (16)
topr P s s

i

so that H;, and G; are computed as

G = P*PI¥, (17)

H = -8¥s7, (18)

where for any matrix 4, the notation A" denotes its
Moore— Penrose pseudo inverse. Addltlonally, by def-
ining P; £ P! — P12P2+P12T and S; & S — 51257 517
for i=1,2,. -1, the matrices K9, and L?
are determined as:

= (&P,CT + V) (CPCT+ W)™, (19)

L = (TTSiTi + R) ™ (TT i@ + MT). (20)

It is clear that the solution to reduced order optimal
LQG control problem depend largely on the solution
of the Lyapunov recursions (12) and (15). Since these
equations also depend on @}, which, as shown in (8),
contains the sought controller parameters Fj, X; and
L;, this interdependence is what makes (12) and (15)
being referred to as nonlinearly coupled Lyapunov
equations [7]. It makes the problem of finite horizon
discrete time reduced order optimal LQG design
problem hard to solve; note that Eq. (12) runs forward
in time and (15) runs backward in time.

3. The Proposed UDU Factorization
Approach

Although the proposed UDU factorization approach
offers better numerical stability, its main advantage is
on reducing the computational load. Note that the
computations of each of the matrices G;, H;, K

and L0 in (17), (18), (19) and (20), respectlvely
require some form of matrix inversion, which can be
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computationally demanding depending on the struc-
ture of involved matrices. The proposed method
reduces the computational load by inverting matrices
whose structure require minimal inversion effort; this
can be open for debate especially after considering the
effort involved in performing UDU factorization.

UDU factorization methods for solving Lyapunov
equations have been in existence for more than two
decades (see, for instance {2.4,5]). Recall that any
symmetric positive definite matrix X can be factorized
into unit upper triangular and positive diagonal fac-
tors as

X = UyDyU?%, (21)

where Uy is unit upper triangular and Dy is positive
definite diagonal. Therefore, since P;, and S} are
symmetric positive definite, they can also be factorized

as
UL, URV[Dh 0 1[UL URYT
P= " 22
1o UZ,_ 0 D2 {0 U%} @)
UL UR1[Dy 0 1[UL U]
Si= " PO (3
Tl UZ(_ | 0 D%} 0 UZ,] @3)

First, Van Willigenburg and De Koning [7] use these

U—D factors to ‘efficiently’ solve the Lyapunov

equations (12) and (15). This approach was ﬁrst pro-
posed by Lupdsh [5], that if P/=U p/DP' P! and
Vi=UpDy Ut v then (12) can be expressed as

Piy1=Up, Dpy Up
=UpDp UL+ Up Dy Uy, (24)

from which a rank one factorization algorithm such as
the Agee—Turner algorithm of [3] can be used to
‘efficiently’ solve the UDU factors Up: and Dp for
the next covariance matrix P; 1 A similar approach is
carried out for the matrix S/ in (15).

Because of the presence of zeros and ones in the
UDU factors, Van Willigenburg and De Koning [7]
propose that matrices G;, and H; in (17) and (18) be
computed with less effort using the U — D factors as

G = UL UK, (25)

Hy=-U3' Uy (26)

Matrices K?, and L? in (19), and (20) are computed
using the same defining formuilas but with P; and S
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computed by
Pi= U}’!D}v! UIT! (27)

Sir1 = U“]giIHD“S'i,-H Ug.-;u' (28)

The UDU factorization of the terms (C;P;Cl + W),
(TTSTT + R;) and their inverses as proposed by [7]
is an unnecessary process, since it does not provide
any advantage.

4. Reader Observations

Despite the mix up of symbols and cluttering of the
presentation by the need to accommodate the varia-
bility of the plant dimension, Van Willigenburg and
De Koning [7] make a good attempt towards an effi-
cient method for computing a solution to the reduced
order optimal LQG control problem. However, it
misses two main points that would have assisted in the
application of the proposed approach. First, accord-
ing to Lupash [5] the UDU factorization in (24) by
rank one factorization algorithm works when &} is an
upper triangular matrix. It is imperative that Van
Willigenburg and De Koning {7] should have addres-
sed how this triangularity requirement is handled,
otherwise the accuracy of the method may be ques-
tioned. Second, the iteration in (15) runs backwards

On 0]
0 0
while the initial value of ®j is assumed known through
controller initialization. It is unfortunate that Van
Willigenburg and De Koning [7] did not clearly dis-
cuss how the S needed in the subsequent iterations are
computed especially Sy and S}. This is particularly
important since Pj depends on both the initial state xg
of the system and S, which is used in estimating the
initial controller state Xy through Hp and the mean
value of the plant state Xp.

and the final value of S is stated to be [
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Practical modern control design and implementation
requires the following four factors to be taken into
consideration:

1. Robustness. The control design must be insensitive
to both parametric errors and unmodeled dynamics
in the design plant.

2. Constraints on the compensator order. Because of
limited control processor throughput, there is an
inherent implementation constraint on the order of
the compensator. In addition, reduced-order com-
pensators are desired because they are easier to
analyze.

3. Additional constraints on the compensator archi-
tecture. All design constraints are not captured by
modern cost functions (in particular H,, H,, L; or
£; cost functions). Some of these additional con-
straints, e.g., the need for an integrator in the
controller or the need for a decentralized control
structure, place additional constraints on the con-
trol architecture.

4. Digital implementation. Almost all modern con-
trollers will be implemented in a digital processor.
In addition, it is very common to obtain the design
plant through digital system identification, which
naturally results in a discrete-time design plant.
Hence, the need for digital implementation can be
accommodated by designing a discrete-time com-
pensator using a discrete-time representation of the
plant.

The authors paper addresses two of these four
fundamental factors (i.e. factors 2 and 4).
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The authors work is part of the evolution of algo-
rithms for reduced-order control that were originally
based on “optimal projection equations,” which are
coupled Riccati and Lyapunov equations that are
derived from the first order necessary conditions that
characterize the H,-optimal reduced-order controller
[1]. The initial focus of these algorithms was on the
design of continuous-time controllers and used
homotopy algorithms. However, it was shown in [11]
that the discrete-time problem can be solved by iter-
ating a “strengthened” set of optimal projections for-
ward and backward in time. These algorithms have
been shown to be much more efficient than the earlier
homotopy algorithms. This paper develops an algo-
rithm for discrete-time, H,-optimal reduced-order
control that is not based on optimal projection
equations, but on a pair of non-linearly coupled
recursive discrete-time Lyapunov equations that also
characterize the optimal reduced-order controller.
The algorithm is seen to outperform that of [11] when
the dimension of the optimal reduced-order controller
is small compared to that of the design plant.

The authors’ algorithm is an important contribu-
tion when viewed from the perspective of algorithms
based on the optimal projection equations. However,
it is unclear whether this approach to reduced-order
controller design has the ability to adequately take
into account robustness aspects or additional con-
troller constraints as eluded to in factors 1 and 3
above. Optimal projection equations have been
developed for reduced-order controllers based on
earlier forms of robustness theory [2,3,9]. However,
these equations are very complex and are more diffi-
cult to solve. To my knowledge, optimal projection
equations have not been developed for the much less

e s dvesn sy o
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conservative robustness theory based on mixed
structured singular value (MSSV) and multiplier the-
ories. These theories also require that the parameters
of a multiplier be designed (see, e.g. [4]), which does
not fit nicely into the optimal projection framework.
In addition, it seems very difficult to incorporate
additional controller constraints in this framework.

An obvious means of designing reduced-order
controllers is to directly choose the controller para-
meters using some type of optimization algorithm.
The authors elude to the perceived weaknesses of this
approach in the second paragraph of the introduction
when they say: “Unless the dimensions of the com-
pensator are very small, this method becomes infea-
sible due to the large number of parameters, and the
non-linear nature of the optimisation.” Here it is
assumed that the authors are referring to the compu-
tational intensity of the parameter optimization
approaches and the tendency to find local minima
instead of a global minimum. These problems were
the original motivation of the search for algorithms
for reduced-order controller synthesis based on the
optimal projection equations. However, although I
was one of the original developers of numerical
algorithms for the optimal projection equations, I am
no longer convinced that parameter optimization is
not the correct approach.

One of the advantages of parameter optimization is
that it has the ability to be used in conjunction with
robustness theory, including the more complex
robustness theory based on MSSV and multiplier
theories. An example of such an algorithm is given in
[4]. In addition, this approach can easily place addi-
tional constraints on the controller architecture. An
example of the design of a robust, multivariable PI
controller is given in [8]. (The same approach is
used to design a fixed-architecture estimator in {7,8].)
However, none of this discussion addresses the ques-
tion as to whether these methods are computationally
feasible, one of the major concerns expressed by the
authors.

First, it should be said that the use of a para-
meterization of the controller can reduce the size
of the problem, although minimal parameterizations
can lead to ill-conditioned numerical algorithms
and so nonminimal parameterizations may yield
better results [5]. It should also be noted that for many
practical control problems, for example, those invol-
ving multivariable PID control, the number of control
parameters is not large. However, the main reason
that I am now optimistic about parameter optimiza-
tion approaches is that computer speed continues to
increase and global search algorithms such as real-
coded genetic algorithms (see [7,8,10]) have become

more efficient, which alleviates the problem of local
minima.

Finally, I would like to comment on the paradigm
expressed in the first paragraph of the Introduction.
The authors express a widely held view that there are
two distinct approaches to reduced-order control
design: (1) the indirect approach in which a full-order
control design is followed by controller reduction,
which offers no guarantees of stability or perform-
ance, and (2) the direct approach which is based
either on solving coupled Riccati and/or Lyapunov
equations as in the author’s paper or alternatively on
parameter optimization. However, this view is not
complete. In reality the direct approaches are based on
numerical algorithms that benefit from good initial
conditions. In fact, the choice of initialization can
determine whether or not the algorithm chosen to
solve the direct approach actually converges to an
acceptable solution [6]. As discussed in [6], the indirect
approaches can be used to provide these initial con-
ditions. What would be of interest is to demonstrate
how indirect approaches can provide initial conditions
for the authors’ algorithm.

References

1. Collins Jr. EG, Haddad WM, Ying SS. Reduced-order
dynamic compensation using the Hyland and Bernstein
optimal projection equations. J Guidance Contr Dyn
1996; 19(2): 407-417

2. Bernstein DS, Haddad WM. The optimal projection
equations with Petersen-Hollot bounds: robust stability
and performance via fixed-order dynamic compensation
for systems with structured real-valued parameter un-
certainty. IEEE Trans Autom Contr 1988; 33:
578-582

3. Bernstein DS, Haddad WM. Robust stability and
performance via fixed-order dynamic compensation with
guaranteed cost bounds. Math Contr Sig Sys 1990; 3:
139-163

4. Collins Jr. EG, Haddad WM, Watson LT, Sadhukhan D.
Probability-one homotopy algorithms for robust
controller synthesis with fixed-structure multipliers.
Int J Robust Nonlinear Contr 1997; 17: 165185

5. Collins Jr. EG, Sadhukhan D. A comparison of descent
and continuation algorithms for H, optimal reduced-
order control cesign. Int J Contr 1998; 69(5): 647-662

6. Collins Jr. EG, Sivaprasad A, Selekwa M. Insights on
reduced order, H, optimal controller cesign methods. In:
Proceedings of the American Control Conference, Den-
ver, CO, June 2003; 5357-5362

7. Curry T, Collins Jr. EG. Robust fault detection and
isolation using robust ¢; estimation. Proceedings of the
American Control Conference, Boston, MA, June 2004;
2451-2456

8. Curry T. Robust fault detection and isolation using
mixed structrued singular value and ¢; theories. Ph.D.




Discussion on “Optimal Reduced-order LQG Design Through Lyapunov Recursions” 607

Dissertation, Florida A&M University, Tallahassee, FL,
December 2004

9. Haddad WM, Huang H-H, Bernstein DS. Robust
stability and performance via fixed-order dynamic com-
pensation: the discrete-time case. IEEE Trans Autom
Contr 1993; 38: 776782

10. Jamshidi M, Coelho Ld-S, Krohling RA, Fleming PJ.
Robust control systems with genetic algorithms. CRC
Press, New York, 2003

11. DeKonig WL. Compensatability and optimal compensa-
tion of systems with white parameters. IEEE Trans
Autom Contr 1992; 37(5): 579-588

Discussion on “UDU Factored Discrete-time Lyapunov Recursions
Solve Optimal Reduced-order LQG Problems”

Yoram Halevi

Faculty of Mechanical Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel

The paper presents a new method for solving the
reduced-order, discrete-time, LQG problem, in its
most general setting. The system, the covariance
matrices and the cost function may be time-varying,
and the latter is in general finite horizon. Further-
more, the controller dimension is bounded but not
fixed, and may vary from one time step to another.
For this general case, the only existing solution
method prior to the new algorithm, is recursive solu-
tion of the strengthened discrete-time optimal pro-
jection equations (SDOPE), which was suggested by
the same authors.

This discussion is aimed at putting the current paper
in perspective with the large body of works on
numerical solution of order reduction problems,
and to highlight some aspects of that problem. Since
the new method is unique in its ability to handle
the general cases, comparison requires that only
time-invariant system and cost function, and infinite
horizon, will be considered from now on. Some of
the quoted results correspond to continuous-time,
but their discrete-time counterparts exist and are
similar.

Reduced order optimal control has some features
that appear paradoxical. For example, the controllers
that should be simpler to use, are much harder to
design. The difficulty, similar to the one encountered
in mode]l order reduction, assumes different forms
depending on the solution method, but it always
exists. Also, despite the fact that the number of
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parameters needed to define the controller is much
lower than the total number of entries in its (4., B,, C)
matrices, nonparametric methods that use that larger
number are more efficient.

A classification that is not mentioned in the paper
is between methods that are direct optimization
algorithms (not to be confused with what the paper
calls ‘direct methods’) and those that depend on the
necessary conditions for optimality. That classifica-
tion is fundamental, but is somewhat blurred by
the fact that the equations obtained by the latter
approach need to be solved numerically, often via
iterations. As an example for an optimization algo-
rithm, consider an n.th order SISO controller, given
by 2n,. parameters using standard parameterization. It
is straightforward to write the cost in terms of those
parameters and to set up a descending gradient algo-
rithm. The difficulty then lies in ensuring stability via
the nonlinear Routh conditions or equivalent condi-
tions in the state space. Similar, yet more elaborated
method is gradient flow [1], which solves the matrix
differential equations

A.=-0J/04., B.=-8J/9B.,
¢, = —aJ/dC., (1)

where the partial derivative can be calculated analy-
tically via Lyapunov equations. Upon convergence,
the algorithm reaches an extremum. Here again the
problem is stability, since in the basic scheme the
trajectories may move into areas of destabilizing con-
trollers. Stability can be guaranteed by introducing a
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barrier term to the cost function, but the calculation
then becomes cumbersome.

In recent years linear matrix inequalities (LMI)
were used to solve some L, as well as H,, problems.
The main advantage of that approach is that after the
problem is formulated as an LMI, reliable and pow-
erful numerical tools exist for the actual solution.
However when applying LMI to order reduction, the
results contain, in addition to linear inequalities, a
rank condition on a certain matrix, hence are not true
LMIs [2]. This is not surprising since LMIs can solve
problems defined by either Lyapunov equations or
Riccati equations, linearized via Schur transforma-
tion. As the equations that define order reduction
problems do not fall exactly into these categories, no
straightforward method will yield LMIs. Recently, it
was suggested to avoid that problem in estimator
design and model reduction [3] by enforcing the order
condition in a structural way. The system (estimator,
model, controller) has full dimension, thus after some
algebraic procedures suitable to LMI, but is modeled
in the unobservable form

A 0 B,
Ae= 5 B, = >
Ao As Ba
Ce=[4a 0] )

As a result, the minimum realization (4.1, Be1, Cc1) has
the desired reduced order. However, as in all other
approaches, the problem can only be shifted but not
eliminated, since the optimization with the para-
meterization (2) was shown in [3] to be realization
dependent. An algorithm for monotonically non-
increasing iterations of state transformation was
given, but in general it converges only to a local
minimum.

We turn now to the class of methods that the one
suggested in the paper belongs to, namely those that
use the first order optimality conditions. Perhaps the
main reason for the popularity of the full order LQG
control is the well known separation principle, which
acts on two levels. First the controller can be split into
an observer and a state feedback. Secondly, the opti-
mal state feedback and observer gains are given by
two independent Riccati equations. In terms of the
general optimal control problem, a two point
boundary value problem (TPBVP) was replaced by
two one sided problems. Each one of these problems
can be solved relatively easily. One solution algorithm
that is similar to the approach in the paper is
integration (or iteration in the discrete time) of the
corresponding Riccati differential equation. Due to
separation, that is carried out only forward and only

once. Reduced order control, on the other hand, is
marked by lack of separation at all levels. This is
demonstrated by the optimal projection result from [4]
where the controller is given by

Ac| B,
C.| D,
_ |T(4~- BR;'BTP - 0CTV;'C)GT |ITOCTPy!
- R;'BTPGT 0
(3)
and the equations that need to be solved are
AQ + QAT + V1 — 0CV;' Co
+7,.0CTV;'corl =0, (4)
PA+ AP+ Ry — PBR;'B™P
+ 7 PBR;'BPr =0, (5)

(4 - BR;'BTP)Q + O(4 — BR;'BTP)"
+0C"V5'CcQ - QCTV5Cor =0, (6)

(4-0CTV;'C) TP+ P(4— 0C"V;'C)
+ PBR;'BTP— 7] PBR;' B Pr, =0, (7)

rank(Q) = rank(P) = rank(QP) = n,, (8)

0P =G"MT, TG'=1I,,
r=GT, 7o=I~-1 (9)

Ri, Ry, Vi and ¥V, are the state and control weight-
ing matrices, and are the process and measurement
noise intensities respectively. Denoting L = oCcTv3 1,
F=R; 1 BT P, the controller appears to be the result of a
projection order reduction applied to (4-BF-KC, L, F)
which is the standard form of an LQG controlier.
However L and F are different than those of the full
order problem, and (6)—(9) are not exactly as in the
order reduction problem for (4-BF-KC, L, F'). Hence,
on the higher level, there is no separation between
optimal control and order reduction.

Equations (4)—(9) have a clear and relatively com-
pact structure, can provide insight on the problem and
are independent of the controller realization. Unfor-
tunately all this nice properties do not lead to any
efficient method of solution as in the standard Riccati
equation. The problems in solving this set of equations
can be identified as the following:

(1) All the equations are coupled,
(2) Even separately, that is, fixing all other variables,
neither one of the equations has a clear and
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efficient solution algorithm. For example, the last
term in (4), even with given T, spoils the structure
needed for Riccati equation solvers.

(3) The rank condition is hard to enforce.

The structural properties of (4)—(9) are destroyed
when it comes to homotopy solutions [5,6] since
enforcing the rank condition requires using " and GT
instead of 7. Equations (4)—(9) were derived by alge-
braic manipulations on the first order necessary
optimality conditions. In previous works by Van
Willington and De Koning, they applied an iterative
scheme to solve SDOPE which is similar to (4)—(9).
Since the compact structure does not seem to provide
any advantage in the numerical solution phase, the
authors chose in the current paper to base the iterative
numerical scheme on an earlier stage in the develop-
ment. At that stage the solution is given in terms of
Lyapunov equations that are linear, easy to iterate,
and suitable for the UDU factorisation. The paper
maintains, and shows by means of an array of simu-
lations, that this factorisation increases the numerical
efficiency and accuracy. In a sense, an implicit
conclusion of the paper is that a highly structured,

609

compact, analytical form of a set of equations is
not necessarily better from a numerical solution point
of view.

References

1. Diab M, Liu WQ, Sreeram V. A new approach for
frequency weighted /2 model reduction of discrete-time
systems. Optim Control Appl Meth 1998; 19(3):
147-167

2. Grigoriadis KM. L, and L,-L., model reduction via
linear matrix inequalities. Int J Contr 1997; 68(3):
485498

3. Halevi Y, Shaked U. Robust model reduction. In:
Proceedings of the 2004 American Control Conference

4. Hyland DC, Bernstein DS. The optimal projection
equations for fixed-order dynamic compensation. IEEE
Trans Autom Contr, 1984; AC-29: 1034-1037

5. Zigic D, Watson LT, Collins EG, Bernsein DS. Homo-
topy methods for solving the optimal projection equa-
tions for the H, reduced order model problem. Int J
Contr 1992; 56: 173191

6. Halevi Y, Zlochevsky A, Gilat T. Parameter-dependent
model order reduction. Int J Contr 1997; 66:
463-485

Discussion on: “UDU Factored Discrete-time Lyapunov Recursions
Solve Optimal Reduced-order LQG Problems”

David C. Hyland!-***

Texas Engineering Experiment Station, Texas A&M University; 2Dwight Look College of Engineering; *College of Engineering;

“College of Science

The paper presents some interesting results on the
direct design of optimal reduced-order linear quad-
ratic Gauassian (LQG) controllers for time-invariant
and time-varying discrete-time systems. In particular,
in earlier work, the authors have developed the
strengthened discrete time optimal projection equa-
tions (SDOPE) and then applied an original approach
to solving the first order necessary conditions by using
forward and backward in time recursion of the
discrete-time equations. The present paper investi-
gates a similar recursive forward/backward recursion
approach, but this time applied to the necessary con-
ditions in the form of two nonlinear, coupled

Lyapunov equations, each of the dimension of the
closed-loop system. The solution method set forth is
particularly intriguing in that it appears to be simpler
and more efficient than the homotopy methods
proposed for this problem. In this discussion paper,
I shall not attempt to offer corroboration of
these results nor indulge in any criticism of the
authors’ excellent work. Instead, I should like to offer
some perspectives, conjectures and observations on
open problems from the point of view of one who
helped originate the optimal projection equations
(OPE). Many of the following comments pertain
nearly equally well to both continuous-time and

i
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discrete-time settings and thus I shall phrase my spe-
cific remarks using the continuous time OPE since the
notation is less complex.

The authors quickly fix attention on minimal
compensators, present some interesting bounds on the
dimension of a minimal compensator in Eq. (4.1) and,
in Theorem 1, give the first-order necessary conditions
for the minimal, optimal reduced-order compensator
in terms of the solutions of the equations of the second
moment of the closed-loop system and the dual
closed-loop system. While they observe that “minimal
compensators are the interesting ones”, I would ven-
ture to say that this is not always the case. First, let me
point out that if N, the time horizon, is large, the
bounds on #{ are not particularly tight. In any case,
our original and rather urgent motivation for devel-
oping the OPE was the need for low-order compen-
sators for very high-order plants in which even the
minimal optimal compensator would be too large. The
immediate application was structural vibration con-
trol, that is, control of essentially infinite dimensional
plants. Some previous work in this area showed that
minimal compensators could be readily computed via
well established model reduction algorithms applied
to full order LQG solutions. Further, in several design
problems of representative complexity, no minimal
compensators of order less than full could be found to
exist. Thus, from the outset, our work has sought very
low-order, sub-minimal compensators. Of course,
such compensators are suboptimal in comparison
with minimal compensators. They are optimal under
the constraint of the fixed order of the compensation.
I am reminded of a famous dictum of David Hilbert:
“On the imposition of constraints, the value of a
minimum never decreases”. In exploring this problem,
it was our intention to characterize the tradeoff
between reduction of compensator complexity and sub-
optimality of performance.

Within the above specialization, which we have
observed may not be the only circumstance of interest,
the authors set forward an efficient UDU factored
numerical algorithm for solution of the second
moment equations by repeated forward and backward
recursion. These seem very well motivated and enlist
our approbation and endorsement. Their discussion
of the numerical damping approach in Eqgs (18.1) and
(18.2) should be similarly well received by those who
have struggled with the reduced-order compensation
problem. Perhaps as a further step, the authors may be
encouraged to undertake a proof of the convergence
of the algorithm.

At this point, let us cast our gaze over issues that lie
beyond the specific resuits of the present paper and
touch upon several broader issues. In particular, let
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me expostulate on the insights afforded by the OPE,
the possibility of yet exploiting the structure of the
OPE for efficient numerical algorithms, the multi-
plicity of solutions, the estimation of their number
and, finally, the exigencies of very low-order, sub-
minimal compensation of very high order plants.
Again, because of the relative simplicity of notation, I
shall illustrate my remarks in the context of the con-
tinuous-time, infinite horizon reduced-order com-
pensation problem for linear, time-invariant plants.

I recall that the most tantalizing insight provided by
the OPE was a clear relation between full-order (or
minimal) compensation and reduced-order (and
yastly sub-minimal) compensation. After considerable
labor, my colleagues and I managed to express the
first-order necessary conditions in several elegant (so
we suppose) forms. The one that most closely links
reduced- to full-order compensation is [1,2]:

0=A0+0A4" + V- 050 + 7. 0507], (la)
0=ATP+ PA+ R — PSP+ 7. PEPry, (Ib)

0=(4-2P)0+0(4—-=P)T

+0%Q - 7, 0807}, (10)
0=(4-0%) P+ P(4— Q%)

+ PSP — 7 PEPTy, (1d)
r=Y 04, (le)

i=1

where 7, £ I, — 7, n is the plant dimension and II;(. . .)
denotes the ith eigenprojection of the indicated argu-
ment, that is, the dyadic formed from the left- and
right-eigenvectors of (...). Clearly, these are gen-
eralizations of the full-order LQG equations. In the
full order case, since the projection 7 is I, 71 = Opxn
and the terms involving 7, vanish, leaving the two
uncoupled Riccati equations and two uncoupled
model-reduction equations which become, in this case,
superfluous.

In this form, the OPE have inspired many relaxation-
type solution algorithms. Most obvious is the
procedure that begins with 7| = 0,4, solves the
full-order LQG Riccati equations and the mgc}el
reduction equations [3], forms 7=}, II; [QP],
where the eigen-projections associated with the 7.
largest eigenvalues of OP are retained, and then iter-
ates until 7 converges. Such procedures, while often
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yielding very useful results, cannot be guaranteed to
converge. Moreover, this entire class of approaches to
the solution of the OPE has as its starting point the
solution of the highest dimensional problem. In
various practical problems ones faces the solution of
full-order compensation for plants having several
hundreds of states.

The above approach, while it seems a logical
extension to modern control theory, utterly reverses
the process followed by practical control designers.
That is, regardless of the dimensionality of the plant,
one typically begins by seeking a very low order
compensator design via classical design techniques,
inspiration and educated guesswork. Then one eval-
uates performance and if this is unacceptable, seeks to
design a compensator of increased dimension. Even-
tually one finds a region of diminishing returns: The
time and cost of designing a higher-order compensa-
tor are inadequately requited by the expected perfor-
mance improvement. At this point, one stops, having
expended the minimum of computation and labor.
My personal hope was that OPE or any optimal
reduced-order compensation theory could prove its
worth by enabling us to deal reliably with multi-input,
multi-output systems while guaranteeing the best
possible performance and minimizing the necessary
computational burden.

Existing computational techniques that exploit the
structure of the OPE have resulted in many results of
practical applicability, but the above hope has never
been fully realized. The author of this discussion
paper, although he has been diverted from the study of
this problem by a lengthy series of distractions over
the last decade, ventures to speculate that a truly
satisfactory achievement of reliable, optimal design
might spring from consideration of the following form
of the OPE [1}:

=(A-705)0+ QA - T0%) + 7,
+ 705077, (2a)

0=(4—ZPr)TP+ P(4—SPr)+R
71 PLPr, (2b)

0=r[(4 - £Pr)Q + 0(4 — £Pr)"+050),
(20)

0=[(4—70%) P+ P(4 - 7Q0%) + PP,
(2d)

rank O = rank P = rank QP =n,. (2e)
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Note that in this form, the dynamical matrices
A~ T1Q% and A — X Pr represent the reduced order

observer and regulator dynamics, respectively. More-

over, in the basis in which 7= ((I)"f 3) and

0= (g‘T QQ'), P= (‘;’T P‘;) the third and fourth
equatlons involve prxmanly 01, O, Py, and P12
These are all low-dimensional quantities.

Equations (2a)—(2¢) suggest an entirely different set
of relaxation techniques. For example, suppose we
start the solution algorithm with 7 =y({ {), where
v < 1. In other words, our point of departure is the
open-loop system. Let us progressively increment -.
Suppose that at some given stage, we view the equa-
tions in the basis in which 7 =({= J), and in this
basis, let:

A O On P1 Py
=1 = - and P= - 5

(3a)
COFA 4 Ao AQIZ) 3b
A-7052 4, ( dgy Ags )’ (3b)
a Ap App
— A = 3
A-2PrEdr (APZI Ap ) (3)
etc. Then (2¢) and (2d) reduce to:
o s~ [ Ap App\T
0=Ap [0 O1a] + [O1 O12] (A,:] A1:22>
+ [(QEQ)l(QEQ) 12]’ (4a)
“ 5 A A A i A 12
o= ate =m0 )
+ [(PEP),(PZP)yy]. (4b)

These equations are of dimension n, X n. Moreover,
accepting previous iterate values for the coefficient
matrices and the non-homogeneous terms and solving
at each iterate for [Ql O12), and [Py P12] we may
expect the le, and Py, terms to be small in compar-
ison with Oy, and P,. Then except for _higher order
quantities, the next approximation for QP is:

QP = [Q% ] [131 f’u], (5)

12

when we then perform an eigen-decomposition of
this matrix, we see that all eigenvalues are zero
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except for n, positive eigenvalues (or nonnegative in
the case wherein the minimal compensator is of
dimension < n.). Also, it is clear that the resulting
eigen-projections are simply rotations of the dyadics
found in the previous iterate. With the new estimate of
the projection, we then iterate through the four
equations as before until 7 converges.

The above sketch is merely a suggestion for future
investigation. The general scheme outlined here has
the virtues that it initiates solution of the P and QO
equations at the convenient open-loop system con-
figuration and involves solution of the lower order,
n. x nversions of the 0 and P equations. The dyadics
defining 7 undergo smooth rotations and the rank of 7
is fixed at n,. The fundamental strategy of this solu-
tion process is to start with low gain design and lowest
order compensators, compute solutions to well-
behaved or low order design equations and, generally,
explore the compensator order — performance trade-
off starting from the lowest order compensators.
Clearly this is more nearly in accord with prevailing
(and largely successful) design practice.

A very important and still unresolved issue is the
non-convexity of the fixed order compensation pro-
blem and the existence of multiple solutions to the
first-order necessary conditions. That there can exist
multiple solutions is easily seen from the following
example. Suppose that the plant is open-loop stable
and that 4, %, %, V3, and R; are all diagonal, with the
last four matrices positive definite. Then it follows
that 0, P, 0, and P are also diagonal and the eigen-
projections of OP are merely the unit coordinate
projections of the form:

1, l=m=k,

. (6)
0, otherwise,

A e, (r0), & {

Referring to (le), the OPE are satisfied when 7 is
composed of any n, distinct unit coordinate projec-
tions. Hence the number of admissible solutions is (/).
In this simple case, one can proceed to evaluate the
cost function for each solution and identify the global
minimum. But of course, in general, it is practically
impossible to carry out such a program.

Much labor has been devoted to improving the
above estimate of the number of solutions. However,
the only hint of progress has arisen in connection with
continuation and homotopy methods [4,5] applied to
solution of OPE by Richter, Watson and DeCarlo. In
particular, using topological degree theory, Richter
derived an upper bound on the number of solutions to
the OPE. Let n,, I, and m denote the dimension of the
unstable plant subspace, the number of measurements
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and the number of controls, respectively. Then the
number of solutions for the case n, > n, is not greater
than:

min(n, m,l) — n,
He — My
1, otherwise.

>, n. < min{n, m, ), )

This result is consistent with (6) and, in general, pro-
vides a much lower bound. However, for open-loop
stable plants (1, = 0) with a complex, multivariable
control system (large m and /) the number of solutions
is still quite large. Moreover, there remains the ques-
tion of how to steer solution algorithms to converge
on the solutions of interest.

Finally, let me offer some comments on the exi-
gencies of very low-order, sub-minimal compensation
of very high order plants and the appropriate choice of
benchmark problems. Low order example problems
are very useful for gaining insight into solution algo-
rithms. On the other hand, reduced order compensa-
tion is most needed when the plant dimension (or
rather the dimension of the subspace needing com-
pensation) is large. Thus the authors are to be con-
gratulated for their work on the European Journal of
Control benchmark problem which displays a very
respectable complexity. I would like to encourage
investigators of reduced order compensation to con-
tinue to explore example problems of representative
complexity. In particular, I think there is a need to
develop algorithms capable of handling plants with
hundreds, not tens of states. The difficulties of such
problems are illustrated by the work reported in [6].
Here we experimentally demonstrated vibration sup-
pression in a large, precision structure using two
dozen inputs and outputs. There were over 150
vibration modes in the disturbance band. The 300
state plant model posed great difficulties to pre-
liminary LQG design and model reduction, let alone
OPE solution. Even at this time, it does not appear
that the basic Riccati and Lyapunov solver software is
well suited to problems of this dimension. This is
unfortunate since this is precisely the sort of problem
for which reliable low order compensator design is
most needed. Returning to earlier remarks, many of
the design algorithms are inspired by the structure of
Eqs (1a)—(le), in which the starting point is a full
order LQG design. But this would appear to tackle the
problem at the wrong end. It might be that a more
suitable point of departure is given by Eqgs (2)-(5),
where at each iteration we succeed in decomposing the
equations into n, x n, and ne X (n— n.) blocks and
initiate the design process at small n.. I believe there is
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substantial potential for development in this direction
and encourage the authors and the community at
large to continue their researches on this fascinating
problem.
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Final Comments by the Authors
L.G. Van Willigenburg and W.L. De Koning

First of all we would like to express our particular
appreciation of the discussions organised by the
European Journal of Control related to the journal’s
publications. We feel the journal is a notable excep-
tion to the rule to formalize publications, science and
research. Like the journal we believe that discussions
and debate are especially important and inspiring.
Therefore secondly we would like to thank the authors
that contributed to the discussion related to our paper.
From these discussions it is obvious that the optimal
reduced-order LQG problem, and its numerical
solution, is by no means a full story, even though
many avenues have been explored by now. ,
We would like therefore to add another perspective.
Our algorithms have been motivated by the approach
which successfully solved the full-order compensation
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problem for discrete-time systems with white
parameters [1]. As a result the numerical algorithms
proposed by us to solve these two problems are very
similar. The major difference, we believe, is that in the
algorithm to solve the reduced-order LQG problem
we are always forced, at some stage, to make a choice
out of several possibilities. If the order of the plant is
n and the prescribed order of the compensator is
n° < n then basically we have to decide on which € < n
eigenvalues or singular values to keep and which
n—n° to skip. So the need to make a choice relates
directly to the prescribed reduced-order n° < n of the
compensator. We know of only one type of order-
reduction problem, namely the Hankel norm model
reduction problem for linear time-invariant systems,
in which this choice is no longer a choice, but dictated
by the criterion based on the Hankel norm. So we
believe that, unless we have a very specific criterion
which dictates the selection, there is no, and will be no
best way to numerically solve a particular order-
reduction problem such as the reduced-order LQG
problem. There is a library of possible algorithms to
numerically solve the reduced-order L.QG problem,
each one having its own merits and drawbacks. As an
engineer or scientist you have to investigate which one
is the best for the problem at hand.

We have added two efficient algorithms to the
library. One in this paper and onein [2]. As opposed to
the other algorithms, our algorithms are also able to
solve the time-varying finite horizon problem. This
problem has been very much ignored, but is crucial for
the control of non-linear systems [3].
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