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Abstract

Because of system and controller constraints ,

frequent , synchronous and periodic sampling is

undesirable or impossible in many practical

applications . In case of asynchronous and

aperiodic sampling the frequent , synchronous and

periodic updating of controls and observations

is . no longer required as opposed to conventional

digital control . In case of asynchronous and

aperiodic sampling an arbitrary number of

control variables is updated and an arbitrary

number of outputs is sampled at arbitrary time

instants . This sampling scheme generalizes most

of the deterministic sampling schemes considered

in the control literature . The design of digital

controllers for non-linear systems may be

considered at two levels . At the highest level a

deterministic non- linear digital optimal control

problem is solved . The computation of numerical

solutions to these problems , in case of

asynchronous and aperiodic sampling is the topic

of this paper. At the second level a digital LQG

compensator is designed to compensate on- line

for errors during the actual control . Recently

we solved the digital LQG compensation problem

in case of asynchronous and aperiodic sampling

and showed how to numerically compute the

solution . Together with the results presented

here this allows for the design and computation

of asynchronous and aperiodically sampled non-

linear digital optimal control systems .

1 Introduction

In many chemical , economical and mechanical

processes , it is undesirable or impossible to

synchronously update measurements at the desired

control rate . It may also be undesirable or

impossible to synchronously update all control

variables . Reasons for this are intensive

analyses and costs associated to measuring ,

costs associated to updating the controls and

the locally distributed nature of the system .

Furthermore industrial control equipment often

uses one D/A and A/D converter to convert

several digitally coded control variables and

analog measurements respectively . Using a

multiplexer these control variables can only be

updated sequentially and kept constant using

zero order hold circuits . In the same manner the

observations can only be updated sequentially

there digital values being stored in the

computer . Only if for each control variable and

each analog output a separate D/A and A/D

converter is used synchronous sampling can

actually be realized . Especially in fast

systems , such as mechanical ones , the time which

elapses between the updating of different

controls and observations cannot be neglected .

Given these practical constraints , in general ,

the updating of an arbitrary number of control

variables as well as the sampling of an

arbitrary number of outputs may occur at

arbitrary time instants . We will refer to this

as asynchronous and aperiodic sampling . This

notion, we believe , generalizes most of the

deterministic sampling schemes that have been

considered in the control literature . It for

instance generalizes conventional sampling ,

multi-rate sampling , non-synchronous sampling

and multiple-order sampling, sampling schemes

considered by Kalman and Bertram in their theory

of sampling systems [ 1 ] .

In case of synchronous sampling a characteristic

feature of digital LQ and LQG problems is that

they can be transformed into equivalent

discrete-time optimal control problems [ 2-6 ] . In

the equivalent discrete-time problem the

continuous-time (inter-sample) system behavior

is explicitly accounted for thus eliminating the

requirement of small sampling intervals .

Recently Van Willigenburg and De Koning [ 7 ]

showed that transformation of digital LQG

problems into equivalent discrete-time problems

is also possible in case of asynchronous

sampling . In this paper we demonstrate that this

also holds for deterministic non-linear digital

optimal control problems . Furthermore we show

how the equivalent discrete-time problem

formulation allows for the application of

dynamic optimization algorithms originally

designed to solve conventional continuous-time

and discrete-time optimal control problems and

how these algorithms should be adapted . Together

with [ 7-8 ] this constitutes a framework for the

design and computation of asynchronous and

aperiodically sampled digital optimal control

systems [ 9] .

2 Digital optimal control problems and their

discrete-time equivalents in case of

asynchronous and aperiodic sampling

Consider the deterministic non-linear system,
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x=f(x, u, t ), XeR", ueR”,

x(to )=xo.

( 1.1 )

(1.2)

Asynchronous and aperiodic sampling is described

in [7 ] where control and observation instants

are distinguished . Since we consider a

deterministic digital optimal control problem we

will only be concerned with the set of control

instants,

Tu={to, c=0,1,2, .. , C-1, tc>tc-1 } ,
(1.3)

At each control instant to, c=0,1,2, .. C- 1 one,

several or all m control variables are updated

while the others remain unchanged . The a-priori

known sets U., c=0,1,2, .. , C-1 describe which

control variables are updated at each control

instant . They contain the me indices , 1smsm, of

updated control variables at tu. i.e. ,

card(U )=me, 1smsm,

ieU¸❤u₁₁ is updated at t ,̧

i=1, 2,.. , m, c=0,1,.. c-1.
(1.4 )

In accordance with (1.3) tc is the final time

involved in the digital optimal control problem

which satisfies ,

In equation (3.3,3.4 ) x( t ) , teltete ) is the

solution of the system equation (1 ) with

x(t )=x。 and u(t )=u。. Note that although in

general analytic expressions for f (x , ue ) and

Le(x,ue) are not available they can be computed

numerically for any x, and u, through

simultaneous numerical integration .

In the equivalent discrete-time problem (3 ) uc

appears as the control . From equation (1.4)

observe that a problem formulation is required

in which only the updated control variables

appear as the control . Therefore we rearrange

the control variables u. into u; which separates

into a first part u containing the updated

control variables and a second part ug

containing the unchanged control variables ,

uy
u'=

u 3
0

(4.1 )

For each control instant to, c=0,1, .. , C-1 this

rearrangement is defined by two one to one

mappings (… ) and U。。(… ) ,

U。。(i )=j, ie{1,2, .. , m。 } ,

jeu , c=0,1,2, .. , C-1 , (4.2 )

tc>tc-1 . (1.5)

After each control instant all control variables

remain unchanged until the next control instant

through the use of zero-order hold circuits ,

u(t)=u(t ), te[ to, to ), c=0,1,2, .. C- 1. (1.6 )

Given the system (1 ) , the objective is to

minimize the costfunctional ,

tc

J(x(t。 ), u(t ) )=4 (x( tc ) , tc ) + ( L(x( t ) , u( t) , t )dt . . ( 2 )

to

If, for the moment , we consider all control

variables to be updated at the control instants

te the digital optimal control problem (1 ), ( 2 )

can be transformed in the following equivalent

discrete-time optimal control problem [10 ] ,

Xc+1=fc(Xc, uc), x¸=x( t¸)€R",

u =u(t¸)≤R™, c=0,1,2 , .. , C-1 ,

C=C- 1

J(Uc,xo)=*(*c)+ [ Lc(Uc,Xc),

(3.1 )

( 3.2 )

indicates that the updated control variable

corresponds to uc, and ,

U。。(i )=j, ie{1 , 2, .. , m-mc } ,

j«U\U。, c=0,1,2, .. , C- 1 , (4.3 )

indicates that the unchanged control variable

uc, corresponds to u., . The set U, defined by

(1.4) contains the me indices of updated control

variables at t, and the set U\U, contains the

indices of the unchanged control variables at te

with,

U={1,2, .. , m} . (4.4 )

From (4 ) we proceed to obtain the equivalent

discrete-time problem formulation which contains

the actual control ug, given by (4 ) . Through

augmentation of the state x ,̧ c=0,1 , .. , C- 1 with

the unchanged control variables ug we are able

to describe their influence properly . The

augmented equivalent discrete-time system

becomes ,

x².¡=f (x , uu), c=0,1,2 , .. , C- 1 , ( 5.1 )

where ,

C=0

tc+1

fc(xc,Uc)=xc*
s
f(x(t ), uc, t )dt, (3.3)

tc

tc+1

L。(U., X。)= [ L(x (t ) , u , t )dt .
(3.4 )

tc

Xc

x8= X ER·
¿(n+m-nc) ,

u
(5.2 )

and the equivalent discrete time costfunction

becomes ,

tc+1

L。(uy, x: )= √ L(x•(t ), uu, t )dt ,

to

(5.3)
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x (t )= X°ER (n+m-mc) , te[tc, tc. ).u

Note that the dimension of the equivalent

discrete-time system (5.1 , 5. 2 ) changes with

time . From equation ( 5.1 , 5.2 ) observe that,

f (x , uo, uc)Xc+1

UC+1

C1
=fc(xo, u!)=

f* (uo, uu)
C2

( 5.4 )

( 6.1 )

The functions f,, c=0,1,2 , .. , C- 1 in ( 6.1 )

describe the transitions of the original state

x. and are therefore equivalent to the functions

fe in equation (3.3) for corresponding values of

ue and u , u related by equation (4 ) . In

equation (6.1 ) the functions f describe the

c2

updating of the unchanged control variables uo,

c=0, 1 , 2 , .. , C-1 at each sampling instant . From

equation (4 ) we obtain ,

uu

u8

=

c2

I¹€R(™-~c+1 ) xmc
I²¤R (~-¤c+1 ) × (m-mc ) , (6.2)

1J=1 if U。c+ 1 ( i ) =U。。( j ) else =0,I¼¸¸= (6.3)

Î²¸¸=1 if U。¸‚₁ (i ) =U。 (j ) else I
onl
=0. (6.4 )"J

3 Numerical solution of the equivalent

discrete-time problems in case of

asynchronous and aperiodic sampling

Necessary conditions for the solution of a

general time-varying discrete-time optimal

control problem are derived in [ 11 ] . The

derivation is easily seen to hold also for

systems with time-varying dimensions . Therefore

the necessary conditions for the solution of the

equivalent discrete- time problem (5) are ,

xo+1=fc (x², uu) ,

XªER(n+m-mc),(n+m-mc) , c=0,1 ,
c=0,1,2, .. , C - 1 , (7.1)

represents the control constraints during each

interval [te, tc+i ), C=0, 1 , 2 , .. , C- 1 . In (7.1-

7.4 ) , which constitutes a two point boundary

value problem, λ°ER(n+m- c) , c=0,1,2 , .. , C are

Lagrange multipliers associated to the

constraints ( 2.1 ) . With respect to (7.4 ) note

that the controls beyond the final time to play

no part in the problem so state augmentation of

the final state is unnecessary .

For our numerical examples we have chosen a

conjugate gradient algorithm because this type

of algorithm does not pose additional

constraints on the optimal control problem and

the initial guess , while it is reported to

converge reasonably fast [ 12-14 ] . Furthermore

during each iteration it does not require the

solution of (7.3 ) . Since no analytic expressions

for the functions L. and fare available such a

solution has to be computed numerically . This

computation may fail and is computationally

expensive since it generally requires many

function evaluations of both L. and fat each

control instant which constitute numerical

integrations . Instead the conjugate gradient

algorithm uses the derivative with respect to

the control of the right hand argument of

equation (7.3 ) to compute an improved control .

This derivative is given by,

(af /au )*x +1+ǝLau , c=0,1,2 , .. , C-1 . (8)

Because analytic expressions for f and Le are

not available the derivatives af /aug and

aLau are computed through numerical

integration and numerical differentiation . The

same holds for the right hand side of equation

(7.2 ) .

Close examination of the algorithm and equations

(3)-(8) reveals that the algorithm may also be

stated in terms of the functions f。 and Le in

equation (3 ) , the original state xe, the updatedx。 ,

and non-updated control variables u , u which

are determined by equation (4 ) , I , I in

equation (6.2-6.4 ) which are also determined by

equation (4 ) and finally A. To see this from

equation (6 ) observe that

x²=(ə£c/axg)™λ©+1+ƏL /axe,

àª¤R(n+m-mc) , c=0,1,2, .. , C- 1 ,

uª=min(L¸(x², V¸) +X +fQ(xq, v©) ) ,

Ꮴ .Vc

V₁, uver™c, c=0,1,2 , .. , C- 1 .

xger(n+m-mo ) , λc=a•/axt,

x¿=×¿€R”‚ àª¾à¿€R”.

( 7.2 )

afc/ǝxc afc/au

(9.1 )afc/ax =

I12

af /au

afc/auu=

( 7.3 )

(7.4 )

Əlc/axa=

aLc/au

(9.2 )

(9.3 )

From equation (5.2 ) and since complete knowledge

of the initial state x is required the values

of the unchanged control variables at the

initial control instant to must be known. In

case control constraints are involved v . in

(7.3) is restricted to belong to the set . that

Since no analytic expressions for f。 and Le are

available also in equation (9 ) the derivatives

have to be computed through numerical

integration and numerical differentiation . Our

implementation of the algorithm was based on

equation (9) .
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4 Numerical examples +1+

(§₁−π/4 ) ( §¸+π/4)

↓ ( ¤¸ −π/4 )² ( § , +π/4 )²+ɛ )

+0.5v2,

We consider two numerical examples . First we

consider the LQ version of the asynchronous and

aperiodically sampled digital LQG tracking

example presented in [ 7 ] where a numerical

solution was computed . For the problem data we

refer to [ 7 ] .

Table 1 compares the optimal controls and

criterion values computed from both numerical

algorithms . Also results obtained from a static

optimization performed using the IMSL routine

BCPOL are included . Static optimization is based

on a mathematical programming formulation of the

digital optimal control problem [ 10 ] . Both the

static and dynamic optimization where initiated

with all controls equal to zero .

As a final example the maneuvering of a fire

truck is chosen since the fire truck constitutes

a highly non-linear three-input system. For

detailed information we refer to Tilbury and

Chelouah [ 15 ] and Bushnell et . al . [ 16 ] . The

dynamics of this system may be represented by

the following model ,

.
X

•
A

.
.

80

cos(80)

sin(00) 0

1 O

tan( 0)
= V + O W + O

10

N

ε=0.003,

• (x(tc) )=xcGxc, G=

1 0 0 0 0

0100 00

O O O O O O

000100

0 0 0 0 0 0

0 0 0 0 0 1

(10.4)

(10.5)

In equation (10.5) two diagonal elements of G

are zero indicating that the angles of the

wheels at the final time are considered

unimportant . The control updating is

characterized by a matrix,

0.0 4.8 13.5 18.4 24.0

2 2 1 3 2

M= 1 2 2 1 (10.6 )

2 3

3 1

3

2

1
2
3

2
1
3

M is defined as follows. Mic-teeTu, M₂c=Mc

c=0,1,2,.. C-1. The remaining elements in each

column of M equal U ( i ) , i =1,.., mc, U。。( i ) ,

i=1,.. , m-m。, c=0,1,2, .. C-1 respectively . This

for instance implies that at t =4.8 control

variable 2 and 3 are updated (see also [ 7 ] ) . For

the unchanged control variable at the initial

time we have ,

-sin( -0。+81 )

1₁cos( 1 )

10=1 , 1₁=3 .

O
O

1

(10.1 )

The three control variables are v , the linear

velocity of the truck w , the angular velocity of

the front wheels of the truck and z, the angular

velocity of the rear wheels of the trailer . The

three controls therefore correspond to driving

and steering . The objective is to maneuver the

truck in 30 seconds from the initial state

x(0 )=x ( t。 )=x。=[0,4,0, π/2,0 , π/2 ] ",

near the prescribed final state,

x( 30 )=x ( tc)=xc= [ 0,0,0,0,0,0] ,

(10.2 )

(10.3 )

while compromising on the magnitude of the

trucks velocity and using a penalty function on

the state variables and , which represent

the angles of the front and rear wheels

respectively . These angles are assumed to be

limited to tπ/4 . These objectives are described

by the costfunction (2.1 ) if we take,

L(x ( t ), u ( t ) , t )=1+-

($。~π/4)($。+π/4 )

($。−π/4)²( ✨。+π/4)²+ c )

uз(to)=0, (10.7)

Table 2 compares results obtained from static

and dynamic optimization . The total number of

updated control variables , as can be seen from

equation (10.6 ) is equal to ten, which for

digital optimal control problems is small . Yet

the advantage of dynamic optimization is

apparent .

5 Conclusions

In case of asynchronous sampling the discrete-

time equivalents of digital optimal control

problems presented in this paper allow for the

application of a wide range of dynamic

optimization algorithms when adapted

appropriately . As an example we treated the

conjugate gradient algorithm but our results are

easily seen to carry over to many other dynamic

optimization algorithms [ 12 ] . The advantage over

static optimization has been demonstrated by two

numerical examples . The approach in general

lacks analytic expressions for the equivalent

discrete-time system and costfunction . These

functions have to be evaluated through numerical

integration . As a result several first

derivatives of these functions , which play a

major role in the algorithm , have to be computed

through numerical differentiation . Clearly the

combination of numerical integration and

differentiation constitutes a source of

numerical errors . The influence of these and

other numerical errors on the suboptimality of

numerical solutions might be an area of future

research.
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Compared to there continuous-time counter parts

digital optimal control problems loose

performance and do not allow for a free final

time . The loss of performance depends on the

sampling scheme . Therefore the following

procedure is suggested . First solve the

corresponding continuous-time problem. Based on

the sampling scheme of the digital optimal

control problem choose as the fixed final time

the earliest control instant greater than the

final time computed from the continuous-time

problem. Using the results of this paper compute

the solution of the digital optimal control

problem where the initial guess is based on the

solution of the continuous-time problem. Use the

computed loss of performance with respect to the

continuous-time problem to decide on the

selection of the sampling scheme and the final

time .
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Tables

Table 1.

u(t )u(to) u(t₁) u(tz) J

LQ: 1.8172e-1 2.9801e-1 2.9801e-1 1.0992e+0 3.3658

0.0000e+0 1.5690e+0 1.0139e+0 1.0139e+0

CT 12

CG: 1.8298e-1 2.9900e-1 2.9900e-1 1.0964e+0 3.3656 2.19

0.0000e+0 1.5671e+0 1.0121e+0 1.0121e+0

SO: 1.8357e-1 3.0092e-1 3.0092e-1 1.0948e+0 3.3656 11.75

0.0000e+0 1.5703e+0 1.0118e+0 1.0118e+0

Minimum cost and optimal control computed from the LQ

problem formulation ( LQ) , the conjugate gradient algorithm

(CG) and static optimization (SO) and the computation time

in seconds necessary to reach the minimum within 1% (CT) .

CG:

SO:

Table 2.

u(t₁)

-2.7227e-1

4. 1995e-3

1.5284e-3

u(to ) u(t₁) u(tz u (t )
-1.0961e- 1 -1.0961e-1 -1.0961e-1 -2.6720e-1

-1.3283e- 1 1.9042E-2 2.1816e-1 4.1995e-3

0.0000e+0 -3.8135e-2 -3.8135e-2 -7.8131e-3

-1.0874e-1 -1.0873e-1 -1.0873e-1 -2.4109e-1

-1.3374e+-1 2.1575e-2 2.1084e-1 6.6844e-3 6.6844e-3
0.0000e+0 -3.8182e-2 -3.8182e-2 -6.3772e-3 -2.65028e-3

J

CG: 1.4230

CT 50% CT 10% CT 1%

71.40 303.18 368.71

SO: 1.4208 205.86 422.65 454.84

-2.9537e-1

Minimum cost and optimal control computed from the conjugate

gradient algorithm (CG) and static optimization (SO) and the

computation time in seconds necessary to reach the minimum

within 50%, 10% and 1% (CT).
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